linux c 随机数?c++获取随机数
很多朋友对于linux c 随机数和c++获取随机数不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
c语言,如何产生随机数
本文由青松原创并依GPL-V2及其后续版本发放,转载请注明出处且应包含本行声明。\x0d\x0a\x0d\x0aC++中常用rand()函数生成随机数,但严格意义上来讲生成的只是伪随机数(pseudo-random integral number)。生成随机数时需要我们指定一个种子,如果在程序内循环,那么下一次生成随机数时调用上一次的结果作为种子。但如果分两次执行程序,那么由于种子相同,生成的“随机数”也是相同的。\x0d\x0a\x0d\x0a在工程应用时,我们一般将系统当前时间(Unix时间)作为种子,这样生成的随机数更接近于实际意义上的随机数。给一下例程如下:\x0d\x0a\x0d\x0a#include\x0d\x0a#include\x0d\x0a#include\x0d\x0ausing namespace std;\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0a double random(double,double);\x0d\x0a srand(unsigned(time(0)));\x0d\x0a for(int icnt= 0; icnt!= 10;++icnt)\x0d\x0a cout<<"No."<< icnt+1<<":"<< int(random(0,10))<< endl;\x0d\x0a return 0;\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0a return start+(end-start)*rand()/(RAND_MAX+ 1.0);\x0d\x0a}\x0d\x0a/*运行结果\x0d\x0a* No.1: 3\x0d\x0a* No.2: 9\x0d\x0a* No.3: 0\x0d\x0a* No.4: 9\x0d\x0a* No.5: 5\x0d\x0a* No.6: 6\x0d\x0a* No.7: 9\x0d\x0a* No.8: 2\x0d\x0a* No.9: 9\x0d\x0a* No.10: 6\x0d\x0a*/\x0d\x0a利用这种方法能不能得到完全意义上的随机数呢?似乎9有点多哦?却没有1,4,7?!我们来做一个概率实验,生成1000万个随机数,看0-9这10个数出现的频率是不是大致相同的。程序如下:\x0d\x0a#include\x0d\x0a#include\x0d\x0a#include\x0d\x0a#include\x0d\x0ausing namespace std;\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0a double random(double,double);\x0d\x0a int a[10]=;\x0d\x0a const int Gen_max= 10000000;\x0d\x0a srand(unsigned(time(0)));\x0d\x0a\x0d\x0a for(int icnt= 0; icnt!= Gen_max;++icnt)\x0d\x0a switch(int(random(0,10)))\x0d\x0a{\x0d\x0a case 0: a[0]++; break;\x0d\x0a case 1: a[1]++; break;\x0d\x0a case 2: a[2]++; break;\x0d\x0a case 3: a[3]++; break;\x0d\x0a case 4: a[4]++; break;\x0d\x0a case 5: a[5]++; break;\x0d\x0a case 6: a[6]++; break;\x0d\x0a case 7: a[7]++; break;\x0d\x0a case 8: a[8]++; break;\x0d\x0a case 9: a[9]++; break;\x0d\x0a default: cerr<<"Error!"<< endl; exit(-1);\x0d\x0a}\x0d\x0a\x0d\x0a for(int icnt= 0; icnt!= 10;++icnt)\x0d\x0a cout<< icnt<<":"<< setw(6)<< setiosflags(ios::fixed)<< setprecision(2)<< double(a[icnt])/Gen_max*100<<"%"<< endl;\x0d\x0a\x0d\x0a return 0;\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0a return start+(end-start)*rand()/(RAND_MAX+ 1.0);\x0d\x0a}\x0d\x0a/*运行结果\x0d\x0a* 0: 10.01%\x0d\x0a* 1: 9.99%\x0d\x0a* 2: 9.99%\x0d\x0a* 3: 9.99%\x0d\x0a* 4: 9.98%\x0d\x0a* 5: 10.01%\x0d\x0a* 6: 10.02%\x0d\x0a* 7: 10.01%\x0d\x0a* 8: 10.01%\x0d\x0a* 9: 9.99%\x0d\x0a*/\x0d\x0a可知用这种方法得到的随机数是满足统计规律的。\x0d\x0a\x0d\x0a另:在Linux下利用GCC编译程序,即使我执行了1000000次运算,是否将random函数定义了inline函数似乎对程序没有任何影响,有理由相信,GCC已经为我们做了优化。但是冥冥之中我又记得要做inline优化得加O3才行...\x0d\x0a\x0d\x0a不行,于是我们把循环次数改为10亿次,用time命令查看执行时间:\x0d\x0achinsung@gentoo~/workspace/test/Debug$ time./test\x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal 2m7.768s\x0d\x0auser 2m4.405s\x0d\x0asys 0m0.038s\x0d\x0achinsung@gentoo~/workspace/test/Debug$ time./test\x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal 2m7.269s\x0d\x0auser 2m4.077s\x0d\x0asys 0m0.025s\x0d\x0a\x0d\x0a前一次为进行inline优化的情形,后一次为没有作inline优化的情形,两次结果相差不大,甚至各项指标后者还要好一些,不知是何缘由...
linuxc随机数linuxc随机
c语言gcc怎么用随机数?
关于c语言gcc随机数:
C语言的vararg(变长参数)不包含长度信息,所以即便没传参数printf也不会知道,它仍然会傻傻地读取预定的位置,在32位下这个位置应该是ebp+12,在64位下则是rsi寄存器。
通常来讲这个内容不会变,至于为什么实际运行中在变,是因为Linux默认开启了名为ASLR的安全手段,在每次程序启动时都给程序基址附加了一个随机的偏移,提高内存漏洞的利用难度。将它关掉就会发现数字稳定下来了。
C++产生随机数的
本文由青松原创并依GPL-V2及其后续版本发放,转载请注明出处且应包含本行声明。\x0d\x0a\x0d\x0aC++中常用rand()函数生成随机数,但严格意义上来讲生成的只是伪随机数(pseudo-random integral number)。生成随机数时需要我们指定一个种子,如果在程序内循环,那么下一次生成随机数时调用上一次的结果作为种子。但如果分两次执行程序,那么由于种子相同,生成的“随机数”也是相同的。\x0d\x0a\x0d\x0a在工程应用时,我们一般将系统当前时间(Unix时间)作为种子,这样生成的随机数更接近于实际意义上的随机数。给一下例程如下:\x0d\x0a\x0d\x0a#include\x0d\x0a#include\x0d\x0a#include\x0d\x0ausing namespace std;\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0a double random(double,double);\x0d\x0a srand(unsigned(time(0)));\x0d\x0a for(int icnt= 0; icnt!= 10;++icnt)\x0d\x0a cout<<"No."<< icnt+1<<":"<< int(random(0,10))<< endl;\x0d\x0a return 0;\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0a return start+(end-start)*rand()/(RAND_MAX+ 1.0);\x0d\x0a}\x0d\x0a/*运行结果\x0d\x0a* No.1: 3\x0d\x0a* No.2: 9\x0d\x0a* No.3: 0\x0d\x0a* No.4: 9\x0d\x0a* No.5: 5\x0d\x0a* No.6: 6\x0d\x0a* No.7: 9\x0d\x0a* No.8: 2\x0d\x0a* No.9: 9\x0d\x0a* No.10: 6\x0d\x0a*/\x0d\x0a利用这种方法能不能得到完全意义上的随机数呢?似乎9有点多哦?却没有1,4,7?!我们来做一个概率实验,生成1000万个随机数,看0-9这10个数出现的频率是不是大致相同的。程序如下:\x0d\x0a#include\x0d\x0a#include\x0d\x0a#include\x0d\x0a#include\x0d\x0ausing namespace std;\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0a double random(double,double);\x0d\x0a int a[10]=;\x0d\x0a const int Gen_max= 10000000;\x0d\x0a srand(unsigned(time(0)));\x0d\x0a\x0d\x0a for(int icnt= 0; icnt!= Gen_max;++icnt)\x0d\x0a switch(int(random(0,10)))\x0d\x0a{\x0d\x0a case 0: a[0]++; break;\x0d\x0a case 1: a[1]++; break;\x0d\x0a case 2: a[2]++; break;\x0d\x0a case 3: a[3]++; break;\x0d\x0a case 4: a[4]++; break;\x0d\x0a case 5: a[5]++; break;\x0d\x0a case 6: a[6]++; break;\x0d\x0a case 7: a[7]++; break;\x0d\x0a case 8: a[8]++; break;\x0d\x0a case 9: a[9]++; break;\x0d\x0a default: cerr<<"Error!"<< endl; exit(-1);\x0d\x0a}\x0d\x0a\x0d\x0a for(int icnt= 0; icnt!= 10;++icnt)\x0d\x0a cout<< icnt<<":"<< setw(6)<< setiosflags(ios::fixed)<< setprecision(2)<< double(a[icnt])/Gen_max*100<<"%"<< endl;\x0d\x0a\x0d\x0a return 0;\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0a return start+(end-start)*rand()/(RAND_MAX+ 1.0);\x0d\x0a}\x0d\x0a/*运行结果\x0d\x0a* 0: 10.01%\x0d\x0a* 1: 9.99%\x0d\x0a* 2: 9.99%\x0d\x0a* 3: 9.99%\x0d\x0a* 4: 9.98%\x0d\x0a* 5: 10.01%\x0d\x0a* 6: 10.02%\x0d\x0a* 7: 10.01%\x0d\x0a* 8: 10.01%\x0d\x0a* 9: 9.99%\x0d\x0a*/\x0d\x0a可知用这种方法得到的随机数是满足统计规律的。\x0d\x0a\x0d\x0a另:在Linux下利用GCC编译程序,即使我执行了1000000次运算,是否将random函数定义了inline函数似乎对程序没有任何影响,有理由相信,GCC已经为我们做了优化。但是冥冥之中我又记得要做inline优化得加O3才行...\x0d\x0a\x0d\x0a不行,于是我们把循环次数改为10亿次,用time命令查看执行时间:\x0d\x0achinsung@gentoo~/workspace/test/Debug$ time./test\x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal 2m7.768s\x0d\x0auser 2m4.405s\x0d\x0asys 0m0.038s\x0d\x0achinsung@gentoo~/workspace/test/Debug$ time./test\x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal 2m7.269s\x0d\x0auser 2m4.077s\x0d\x0asys 0m0.025s\x0d\x0a\x0d\x0a前一次为进行inline优化的情形,后一次为没有作inline优化的情形,两次结果相差不大,甚至各项指标后者还要好一些,不知是何缘由...