linux android ndk android与linux的关系
大家好,今天来为大家分享linux android ndk的一些知识点,和android与linux的关系的问题解析,大家要是都明白,那么可以忽略,如果不太清楚的话可以看看本篇文章,相信很大概率可以解决您的问题,接下来我们就一起来看看吧!
如何使用android的ndk编译器 编译c++的库
1.概述首先回顾一下 Android NDK开发中,Android.mk和 Application.mk各自的职责。
Android.mk,负责配置如下内容:(1)模块名(LOCAL_MODULE)(2)需要编译的源文件(LOCAL_SRC_FILES)(3)依赖的第三方库(LOCAL_STATIC_LIBRARIES,LOCAL_SHARED_LIBRARIES)(4)编译/链接选项(LOCAL_LDLIBS、LOCAL_CFLAGS)
Application.mk,负责配置如下内容:(1)目标平台的ABI类型(默认值:armeabi)(APP_ABI)(2) Toolchains(默认值:GCC 4.8)(3) C++标准库类型(默认值:system)(APP_STL)(4) release/debug模式(默认值:release)由此我们可以看到,本文所涉及的编译选项在Android.mk和Application.mk中均有出现,下面我们将一个个详细介绍。
2. APP_ABI
ABI全称是:Application binary interface,即:应用程序二进制接口,它定义了一套规则,允许编译好的二进制目标代码在所有兼容该ABI的操作系统和硬件平台中无需改动就能运行。(具体的定义请参考百度百科或者维基百科)由上述定义可以判断,ABI定义了规则,而具体的实现则是由编译器、CPU、操作系统共同来完成的。不同的CPU芯片(如:ARM、Intel x86、MIPS)支持不同的ABI架构,常见的ABI类型包括:armeabi,armeabi-v7a,x86,x86_64,mips,mips64,arm64-v8a等。这就是为什么我们编译出来的可以运行于Windows的二进制程序不能运行于Mac OS/Linux/Android平台了,因为CPU芯片和操作系统均不相同,支持的ABI类型也不一样,因此无法识别对方的二进制程序。而我们所说的“交叉编译”的核心原理也跟这些密切相关,交叉编译,就是使用交叉编译工具,在一个平台上编译生成另一个平台上的二进制可执行程序,为什么可以做到?因为交叉编译工具实现了另一个平台所定义的ABI规则。我们在Windows/Linux平台使用Android NDK交叉编译工具来编译出Android平台的库也是这个道理。这里给出最新 Android NDK所支持的ABI类型及区别:那么,如何指定ABI类型呢?在 Application.mk文件中添加一行即可:
APP_ABI:= armeabi-v7a//只编译armeabi-v7a版本
APP_ABI:= armeabi armeabi-v7a//同时编译armeabi,armeabi-v7a版本
APP_ABI:= all//编译所有版本
3. LOCAL_LDLIBS
Android NDK除了提供了Bionic libc库,还提供了一些其他的库,可以在 Android.mk文件中通过如下方式添加依赖:
LOCAL_LDLIBS:=-lfoo其中,如下几个库在 Android NDK编译时就默认链接了,不需要额外添加在 LOCAL_LDLIBS中:(1) Bionic libc库(2) pthread库(-lpthread)(3) math(-lmath)(4) C++ support library(-lstdc++)下面我列了一个表,给出了可以添加到“LOCAL_LDLIBS”中的不同版本的Android NDK所支持的库:下面是我总结的一些常用的CFLAGS编译选项:(1)通用的编译选项-O2编译优化选项,一般选择O2,兼顾了优化程度与目标大小-Wall打开所有编译过程中的Warning-fPIC编译位置无关的代码,一般用于编译动态库-shared编译动态库-fopenmp打开多核并行计算,-Idir配置头文件搜索路径,如果有多个-I选项,则路径的搜索先后顺序是从左到右的,即在前面的路径会被选搜索-nostdinc该选项指示不要标准路径下的搜索头文件,而只搜索-I选项指定的路径和当前路径。--sysroot=dir用dir作为头文件和库文件的逻辑根目录,例如,正常情况下,如果编译器在/usr/include搜索头文件,在/usr/lib下搜索库文件,它将用dir/usr/include和dir/usr/lib替代原来的相应路径。-llibrary查找名为library的库进行链接-Ldir增加-l选项指定的库文件的搜索路径,即编译器会到dir路径下搜索-l指定的库文件。-nostdlib该选项指示链接的时候不要使用标准路径下的库文件(2) ARM平台相关的编译选项-marm-mthumb二选一,指定编译thumb指令集还是arm指令集-march=name指定特定的ARM架构,常用的包括:-march=armv6,-march=armv7-a-mfpu=name给出目标平台的浮点运算处理器类型,常用的包括:-mfpu=neon,-mfpu=vfpv3-d16-mfloat-abi=name给出目标平台的浮点预算ABI,支持的参数包括:“soft”,“softfp” and“hard”
如何定位Android NDK开发中遇到的错误
如何定位Android NDK开发中遇到的错误
Android NDK中的错误定位对很多开发者来说是一件头疼的事,本文通过一个Demo程序详细讲解了NDK的错误是如何产生的,以及如何通过命令行工具定位NDK的问题所在。
Android NDK是什么?
Android NDK是在SDK前面又加上了“原生”二字,即Native Development Kit,因此又被Google称为“NDK”。众所周知,Android程序运行在Dalvik虚拟机中,NDK允许用户使用类似C/ C++之类的原生代码语言执行部分程序。NDK包括:
从C/ C++生成原生代码库所需要的工具和build files;
将一致的原生库嵌入可以在Android设备上部署的应用程序包文件(application packages files,即.apk文件)中;
支持所有未来Android平台的一系列原生系统头文件和库。
为何要用到NDK?概括来说主要分为以下几种情况:
代码保护,由于APK的Java层代码很容易被反编译,而C/C++库反汇难度较大;
在NDK中调用第三方C/C++库,因为大部分的开源库都是用C/C++代码编写的;
便于移植,用C/C++写的库可以方便地在其他的嵌入式平台上再次使用。
Android JNI与NDK的关系
Java Native Interface(JNI)标准是Java平台的一部分,它允许Java代码和其他语言写的代码进行交互。JNI是本地编程接口,它使得在Java虚拟机(VM)内部运行的Java代码能够与用其它编程语言(如C、C++和汇编语言)编写的应用程序和库进行交互操作。
简单来说,可以认为NDK就是能够方便快捷开发.so文件的工具。JNI的过程比较复杂,生成.so需要大量操作,而NDK的作用则是简化了这个过程。
哪些常见的NDK类型异常会导致程序Crash?
NDK编译生成的.so文件作为程序的一部分,在运行发生异常时同样会造成程序崩溃。不同于Java代码异常造成的程序崩溃,在NDK的异常发生时,程序在Android设备上都会立即退出,即通常所说的闪退,而不会弹出“程序xxx无响应,是否立即关闭”之类的提示框。
NDK是使用C/C++来进行开发的,熟悉C/C++的程序员都知道,指针和内存管理是最重要也是最容易出问题的地方,稍有不慎就会遇到诸如内存无效访问、无效对象、内存泄露、堆栈溢出等常见的问题,最后都是同一个结果:程序崩溃。例如我们常说的空指针错误,就是当一个内存指针被置为空(NULL)之后再次对其进行访问;另外一个经常出现的错误是,在程序的某个位置释放了某个内存空间,而后在程序的其他位置试图访问该内存地址,这就会产生无效地址错误。常见的错误类型如下:
初始化错误;
访问错误;
内存泄露;
参数错误;
堆栈溢出;
类型转换错误;
数字除0错误。
如何发现并解决NDK错误?
利用Android NDK开发本地应用时,几乎所有的程序员都遇到过程序崩溃的问题,但它的崩溃会在logcat中打印一堆看起来类似天书的堆栈信息,让人举足无措。单靠添加一行行的打印信息来定位错误代码做在的行数,无疑是一件令人崩溃的事情。在网上搜索“Android NDK崩溃”,可以搜索到很多文章来介绍如何通过Android提供的工具来查找和定位NDK的错误,但大都晦涩难懂。下面以一个实际的例子来说明,如何通过两种不同的方法,来定位错误的函数名和代码行。
首先,来看看我们在hello-jni程序的代码中做了什么(有关如何创建或导入工程,此处略),下面代码中:在JNI_OnLoad()的函数中,即so加载时,调用willCrash()函数,而在willCrash()函数中, std::string的这种赋值方法会产生一个空指针错误。这样,在hello-jni程序加载时就会闪退。我们记一下这两个行数:在61行调用了willCrash()函数;在69行发生了崩溃。
下面我们来看看发生崩溃(闪退)时系统打印的logcat日志:
如果你看过logcat打印的NDK错误的日志就会知道,我省略了后面很多的内容,很多人看到这么多密密麻麻的日志就已经头晕脑胀了,即使是很多资深的Android开发者,在面对NDK日志时也大都默默地选择了无视。
其实,只要你细心的查看,再配合Google提供的工具,完全可以快速地准确定位出错的代码位置,这个工作我们称之为“符号化”。需要注意的是,如果要对NDK错误进行符号化的工作,需要保留编译过程中产生的包含符号表的so文件,这些文件一般保存在$PROJECT_PATH/obj/local/目录下。
第一种方法:ndk-stack
这个命令行工具包含在NDK工具的安装目录,和ndk-build及其他常用的一些NDK命令放在一起,比如在我的电脑上,其位置是/android-ndk-r9d/ndk-stack。根据Google官方文档,NDK从r6版本开始提供ndk-stack命令,如果你用的之前的版本,建议还是尽快升级至最新的版本。使用ndk–stack命令也有两种方式
实时分析日志
在运行程序的同时,使用adb获取logcat日志,并通过管道符输出给ndk-stack,同时需要指定包含符号表的so文件位置;如果你的程序包含了多种CPU架构,在这里需求根据错误发生时的手机CPU类型,选择不同的CPU架构目录,如:
当崩溃发生时,会得到如下的信息:
我们重点看一下#03和#04,这两行都是在我们自己生成的libhello-jni.so中的报错信息,因此会发现如下关键信息:
回想一下我们的代码,在JNI_OnLoad()函数中(第61行),我们调用了willCrash()函数;在willCrash()函数中(第69行),我们制造了一个错误。这些信息都被准确无误的提取了出来!是不是非常简单?
先获取日志再分析
这种方法其实和上面的方法没有什么大的区别,仅仅是logcat日志获取的方式不同。可以在程序运行的过程中将logcat日志保存到一个文件,甚至可以在崩溃发生时,快速的将logcat日志保存起来,然后再进行分析,比上面的方法稍微灵活一点,而且日志可以留待以后继续分析。
第二种方法:使用addr2line和objdump命令
这个方法适用于那些不满足于上述ndk-stack的简单用法,而喜欢刨根问底的程序员们,这两个方法可以揭示ndk-stack命令的工作原理是什么,尽管用起来稍微麻烦一点,但可以稍稍满足一下程序员的好奇心。
先简单说一下这两个命令,在绝大部分的Linux发行版本中都能找到他们,如果你的操作系统是Linux,而你测试手机使用的是Intel x86系列,那么你使用系统中自带的命令就可以了。然而,如果仅仅是这样,那么绝大多数人要绝望了,因为恰恰大部分开发者使用的是Windows,而手机很有可能是armeabi系列。
在NDK中自带了适用于各个操作系统和CPU架构的工具链,其中就包含了这两个命令,只不过名字稍有变化,你可以在NDK目录的toolchains目录下找到他们。以我的Mac电脑为例,如果我要找的是适用于armeabi架构的工具,那么他们分别为arm-linux-androideabi-addr2line和arm-linux-androideabi-objdump;位置在下面目录中,后续介绍中将省略此位置:
假设你的电脑是Windows系统,CPU架构为mips,那么你要的工具可能包含在一下目录中:
接下来就让我们来看看如何使用这两个工具,下面具体介绍。
找到日志中的关键函数指针
其实很简单,就是找到backtrace信息中,属于我们自己的so文件报错的行。
首先要找到backtrace信息,有的手机会明确打印一行backtrace(比如我们这次使用的手机),那么这一行下面的一系列以“#两位数字 pc”开头的行就是backtrace信息了。有时可能有的手机并不会打印一行backtrace,那么只要找到一段以“#两位数字 pc”开头的行,就可以了。
其次要找到属于自己的so文件报错的行,这就比较简单了。找到这些行之后,记下这些行中的函数地址。
使用addr2line查找代码位置
执行如下的命令,多个指针地址可以在一个命令中带入,以空格隔开即可
结果如下:
从addr2line的结果就能看到,我们拿到了我们自己的错误代码的调用关系和行数,在hello-jni.cpp的69行和61行(另外两行因为使用的是标准函数,可以忽略掉),结果和ndk-stack是一致的,说明ndk-stack也是通过addr2line来获取代码位置的。
使用objdump获取函数信息
通过addr2line命令,其实我们已经找到了我们代码中出错的位置,已经可以帮助程序员定位问题所在了。但是,这个方法只能获取代码行数,并没有显示函数信息,显得不那么“完美”,对于追求极致的程序员来说,这当然是不够的。下面我们就演示一下怎么来定位函数信息。
首先使用如下命令导出函数表:
在生成的asm文件中查找刚刚我们定位的两个关键指针00004fb4和00004f58:
从这两张图可以清楚的看到(要注意的是,在不同的NDK版本和不同的操作系统中,asm文件的格式不是完全相同,但都大同小异,请大家仔细比对),这两个指针分别属于willCrash()和JNI_OnLoad()函数,再结合刚才addr2line的结果,那么这两个地址分别对应的信息就是:
相当完美,和ndk-stack得到的信息完全一致!
Testin崩溃分析如何帮开发者发现NDK错误
以上提到的方法,只适合在开发测试期间,如果你的应用或游戏已经上线,而用户经常反馈说崩溃、闪退,指望用户帮你收集信息定位问题几乎是不可能的。这个时候,我们就需要用其他的手段来捕获崩溃信息。
目前业界已经有一些公司推出了崩溃信息收集的服务,通过嵌入SDK,在程序发生崩溃时收集堆栈信息,发送到云服务平台,从而帮助开发者定位错误信息。在这方面,国内的Testin和国外的crittercism都可以提供类似服务。
Testin从1.4版本开始支持NDK的崩溃分析,其最新版本已升级到1.7。当程序发生NDK错误时,其内嵌的SDK会收集程序在用户手机上发生崩溃时的堆栈信息(主要就是上面我们通过logcat日志获取到的函数指针)、设备信息、线程信息等,SDK将这些信息上报至Testin云服务平台,在平台进行唯一性的处理、并可以自定义时段进行详尽的统计分析,从多维度展示程序崩溃的信息和严重程度;最新版本还支持用户自定义场景,方便开发者定位问题所在。
从用户手机上报的堆栈信息,Testin为NDK崩溃提供了符号化的功能,只要将我们编译过程中产生的包含符号表的so文件上传,就可以自动将函数指针地址定位到函数名称和代码行数。符号化之后,看起来就和我们前面在本地测试的结果是一样的了,一目了然。而且使用这个功能还有一个好处:这些包含符号表的so文件,在每次开发者编译之后都会改变,很有可能我们发布之后就已经变了,因为开发者会修改程序。在这样的情况下,即使我们拿到了崩溃时的堆栈信息,那也无法再进行符号化了。我们可以将这些文件上传到Testin进行符号化的工作,Testin会为我们保存和管理不同版本的so文件,确保信息不会丢失。
出自:
深入Linux环境下NDK的配置方法linux配置ndk
《深入Linux环境下NDK的配置方法》
Linux环境下的NDK(Native Development Kit)是一种开发工具,它使开发者能够使用C和C++编写针对Android设备的原生应用程序。在此文中,我们将详细介绍如何在Linux环境下配置NDK。
第一步:下载并安装NDK。下载最新版本的Android NDK,按照官方文档指导安装即可。如果要使用不同版本的NDK,请下载女性对应版本的文件并完成安装。
第二步:配置环境变量。配置NDK的环境变量很重要,它将是以后使用NDK的基础。执行下面的指令,把NDK的路径添加到PATH环境变量中:
export NDK_ROOT=[ndk install path]
export PATH=$NDK_ROOT:$PATH
如果要在终端中添加长期可使用的路径,请在.profile文件中添加上面的指令,并执行:
source~/.profile
第三步:安装NDK工具。安装完NDK之后,需要安装相关的NDK工具,包括:make,gcc,gdb等。使用如下指令查看是否已安装:
which make
which gcc
如果返回的信息是一个空,则表示这些工具都没有安装。下载一个可执行文件并运行它以完成安装:make– v;gcc-v;gdb-v。
第四步:编写和编译C/C++项目。完成上述步骤之后,现在可以使用Android NDK开发应用了。使用以下指令编译所有C/C++源文件:
ndk-build
该指令会生成编译后的可执行文件,如果有任何错误,可以再次检查上述步骤,确保未出错。
以上是Linux环境中NDK的配置方法。配置完成后,可以利用NDK开发丰富多彩的Android原生应用程序。此外,也可以借助官方文档和支持社区了解更多有关NDK的信息。