ubuntu glut,ubuntu软件推荐

如何在Linux下使用OpenGL+ C++开发

前提是:

1.配置好了Ubuntu下的c++环境,gcc以及g++可用。

2.使用eclipse for c+做OpenGL开发

步骤一:

在ubuntu终端下运行以下命令,安装opengl所需要的库文件

$ sudo apt-get install build-essential

$ sudo apt-get install freeglut3-dev

步骤二:

运行一下opengl实例,测试配置的环境是否安装成功

在eclipse下新建一个工程文件,假设我们命名为Test,在工程Test里面新建一个C++源代码文件,这里我们把它命名为main.cpp,在main.cpp文件中打入一下代码

#include<GL/glut.h>

voidinit();

voiddisplay();

intmain(intargc,char*argv[])

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

glutInitWindowPosition(0,0);

glutInitWindowSize(300,300);

glutCreateWindow("OpenGL3DView");

init();

glutDisplayFunc(display);

glutMainLoop();

return0;

}

voidinit()

{

glClearColor(0.0,0.0,0.0,0.0);

glMatrixMode(GL_PROJECTION);

glOrtho(-5,5,-5,5,5,15);

glMatrixMode(GL_MODELVIEW);

gluLookAt(0,0,10,0,0,0,0,1,0);

}

voiddisplay()

{

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,0,0);

glutWireTeapot(3);

glFlush();

}

右击工程文件名

Test->点击属性(Properties)->C/C++Bulid->Settings->GCC C++Linker->Libraries,

在这个窗口中添加几个个库,

分别为GLU,glut,GL,

点击OK。

如果还想使用opencv,

在这里还加入cv,cxcore,highgui等库文件,

根据自己的需要来定

同时在GCC C++ Compiler->Includes下的incudepath中添加路径/usr/include/GL

如果还想使用opencv中的库,那么加入opencv的路径,一般是/usr/include/opencv

运行以上程序,会显示一个茶壶形状的opengl运行结果

ubuntu 怎么安装 erlang

1:如果你主机上没有安装jdk,那需先安装,安装过程如下:

# sudo apt-get update(更新已安装的包)

#sudo apt-get install openjdk-7-jdk

# javac-version(检测版本)

2:安装erlang R17B的过程如下:

安装相关类库

# install libraries and tools:

sudo apt-get install libncurses5-dev m4 fop freeglut3-dev

libwxgtk2.8-dev g++ libssl-dev xsltproc build-essential tk8.5 unixodbc

unixodbc-dev libxml2-utils

下载erlang可以手动去官网下载:

# download source code wget

# tar zxvf otp_src_R17B.tar.gz(解压)

# cd otp_src_R17B/(进入到解压好的文件夹中)

编译安装

#./configure--prefix=/opt/erlang(指定安装目录)

# make(编译)

# make install(安装)

更新环境变量

# vim/etc/profile

在最后一行加上

export PATH=/opt/erlang/bin:$PATH

保存退出后

source/etc/profile

命令行中输入erl看是否安装成功!

ubuntu14.04怎么测试cuda是否安装成功

首先,我装的系统是Ubuntu 14.04.1。

1.预检查

按照参考链接1中所示,检查系统。

执行命令:

:~$ lspci| grep-i nvidia

03:00.0 3D controller: NVIDIA Corporation GK110GL [Tesla K20c](rev a1)

04:00.0 VGA compatible controller: NVIDIA Corporation GK106GL [Quadro K4000](rev a1)

04:00.1 Audio device: NVIDIA Corporation GK106 HDMI Audio Controller(rev a1)

发现有K20和K4000两块GPU,还有一块Audio的应该是声卡。

然后,执行命令检查系统版本:

~$ uname-m&& cat/etc/*release

x86_64

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION="Ubuntu 14.04.1 LTS"

NAME="Ubuntu"

VERSION="14.04.1 LTS, Trusty Tahr"

ID=ubuntu

ID_LIKE=debian

PRETTY_NAME="Ubuntu 14.04.1 LTS"

VERSION_ID="14.04"

HOME_URL=""

SUPPORT_URL=""

BUG_REPORT_URL=""

可以看到,机器是ubuntu14.04的版本。

然后,使用gcc--version检查gcc版本是否符合链接1中的要求:

~$ gcc--version

gcc(Ubuntu 4.8.2-19ubuntu1) 4.8.2

Copyright(C) 2013 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

检查完毕,就去nvidia的官网(参考链接3)上下载驱动,为下载的是ubuntu14.04的deb包。

2.安装

Deb包安装较为简单,但是安装过程中提示不稳定,不过用着也没啥出错的地方。

先按照参考链接2安装必要的库。

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

还是按照官网上的流程来。

$ sudo dpkg-i cuda-repo-<distro>_<version>_<architecture>.deb

$ sudo apt-get update

$ sudo apt-get install cuda

可能需要下载较长时间,但是没关系,放在那等着就是。

没啥问题就算安装好了。

安装过程中提示:

*** Please reboot your computer and verify that the nvidia graphics driver is loaded.***

*** If the driver fails to load, please use the NVIDIA graphics driver.run installer***

*** to get into a stable state.

我没管,提示使用.run安装比较稳定,但我现在用着没问题。

3.配置环境

我的系统是64位的,因此配置环境时在.bashrc中加入

$ export PATH=/usr/local/cuda-6.5/bin:$PATH

$ export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATH

配置完环境后,执行命令

~$ source.bashrc

使其立刻生效。

4.安装sample

配置好环境后,可以执行如下命令:

$ cuda-install-samples-6.5.sh<dir>

这样,就将cuda的sample拷贝到dir文件夹下了。该命令只是一个拷贝操作。

然后进入该文件夹,执行make命令进行编译,编译时间较长,需要等待。

5.验证安装是否成功

5.1.驱动验证

首先,验证nvidia的驱动是否安装成功。

~$ cat/proc/driver/nvidia/version

NVRM version: NVIDIA UNIX x86_64 Kernel Module 340.29 Thu Jul 31 20:23:19 PDT 2014

GCC version: gcc version 4.8.2(Ubuntu 4.8.2-19ubuntu1)

5.2. Toolkit验证

验证cuda toolkit是否成功。

~$ nvcc-V

nvcc: NVIDIA(R) Cuda compiler driver

Copyright(c) 2005-2014 NVIDIA Corporation

Built on Thu_Jul_17_21:41:27_CDT_2014

Cuda compilation tools, release 6.5, V6.5.12

5.3.设备识别

使用cuda sample已经编译好的deviceQuery来验证。deviceQuery在<cuda_sample_install_path>/bin/x_86_64/linux/release目录下。我的结果如下,检测出了两块GPU来。

~/install/NVIDIA_CUDA-6.5_Samples/bin/x86_64/linux/release$./deviceQuery

./deviceQuery Starting...

CUDA Device Query(Runtime API) version(CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0:"Tesla K20c"

CUDA Driver Version/ Runtime Version 6.5/ 6.5

CUDA Capability Major/Minor version number: 3.5

Total amount of global memory: 4800 MBytes(5032706048 bytes)

(13) Multiprocessors,(192) CUDA Cores/MP: 2496 CUDA Cores

GPU Clock rate: 706 MHz(0.71 GHz)

Memory Clock rate: 2600 Mhz

Memory Bus Width: 320-bit

L2 Cache Size: 1310720 bytes

Maximum Texture Dimension Size(x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size,(num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size,(num) layers 2D=(16384, 16384), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block(x,y,z):(1024, 1024, 64)

Max dimension size of a grid size(x,y,z):(2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 2 copy engine(s)

Run time limit on kernels: No

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Enabled

Device supports Unified Addressing(UVA): Yes

Device PCI Bus ID/ PCI location ID: 3/ 0

Compute Mode:

< Default(multiple host threads can use::cudaSetDevice() with device simultaneously)>

Device 1:"Quadro K4000"

CUDA Driver Version/ Runtime Version 6.5/ 6.5

CUDA Capability Major/Minor version number: 3.0

Total amount of global memory: 3071 MBytes(3220504576 bytes)

( 4) Multiprocessors,(192) CUDA Cores/MP: 768 CUDA Cores

GPU Clock rate: 811 MHz(0.81 GHz)

Memory Clock rate: 2808 Mhz

Memory Bus Width: 192-bit

L2 Cache Size: 393216 bytes

Maximum Texture Dimension Size(x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size,(num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size,(num) layers 2D=(16384, 16384), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block(x,y,z):(1024, 1024, 64)

Max dimension size of a grid size(x,y,z):(2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 1 copy engine(s)

Run time limit on kernels: Yes

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

Device supports Unified Addressing(UVA): Yes

Device PCI Bus ID/ PCI location ID: 4/ 0

Compute Mode:

< Default(multiple host threads can use::cudaSetDevice() with device simultaneously)>

> Peer access from Tesla K20c(GPU0)-> Quadro K4000(GPU1): No

> Peer access from Quadro K4000(GPU1)-> Tesla K20c(GPU0): No

deviceQuery, CUDA Driver= CUDART, CUDA Driver Version= 6.5, CUDA Runtime Version= 6.5, NumDevs= 2, Device0= Tesla K20c, Device1= Quadro K4000

Result= PASS

这样,cuda就安装成功了。

阅读剩余
THE END