linux驱动arm,arm架构linux
这篇文章给大家聊聊关于linux驱动arm,以及arm架构linux对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。
关于linux和arm嵌入式的关系。
linux是操作系统内核。arm嵌入式,是说的硬件。也就是把arm架构的CPU做的机器,嵌入到某个设备上作为一部分的开发。操作方法如下:
1、新建一个目录:mkdir embedded_linux,将linux内核解压到该目录下:tar-jxf linux-3.1.1.tar.bz2-C embedded_linux/。
2、内核的配置有三种方式:make config文本配置方式;make menuconfig菜单配置方式;make xconfig图形界面配置方式(需安装qt)。
3、终端输入命令:make menuconfig,打开内核配置界面。
4、内核裁剪需要根据项目需求,System V IPC(IPC:Inter Process Communication)是组系统调用及函数库,程序运行必备的,其余根据个人需求包含或删除。
5、在所有需要的选项配置完毕之后,按Esc退出,选择Yes保存,就完成了。
嵌入式linux和嵌入式android系统有什么区别和联系
嵌入式android源码架构:uboot+linux kernel+android(包含文件系统,虚拟机,UI)
嵌入式linux:这是大部分人认识的linux uboot+linux kernel+文件系统+QT(UI),
当然两者的linux内核因为上层UI的不同会稍有差别,不过还是非常接近的,做过linux的人可以无缝切换到android底层开发,所以大家说的学习android系统,其实最重要的就是学习linux驱动,再加一下android下的专门的HAL,JNI,java等等,不过大公司android相关部分也是专门的人做的了。
甚至连QT都不用了,因为linux很多设备都是没有UI的,所以要来干啥?直接无界面,照样是嵌入式linux。
现在大家说的什么嵌入式debian,ubuntu,其实也是站在linux巨人的肩膀上,其实都不算是linux的分支,只算是linux的延伸,小变化而已。看到这里大家知道嵌入式linux的强大了吧,反正是比wince强大N倍啊。
O(∩_∩)O~,所以啊,学习嵌入式android,其实底下就是学习uboot,linux内核啊,不会搞这些就像搞应用一样,所以大家以为android就是java,是非常片面的。
以前老的,说了一下区别,可以参考一下
ARCH--这是Android修改了arch/arm下面的一些文件:
arch/arm:
Chg: arch/arm/kernel/entry-armv.S
Chg: arch/arm/kernel/module.c
Chg: arch/arm/kernel/process.c
Chg: arch/arm/kernel/ptrace.c
Chg: arch/arm/kernel/setup.c
Chg: arch/arm/kernel/signal.c
Chg: arch/arm/kernel/traps.c
Chg: arch/arm/mm/cache-v6.S
Chg: arch/arm/vfp/entry.S
Chg: arch/arm/vfp/vfp.h
Chg: arch/arm/vfp/vfphw.S
Chg: arch/arm/vfp/vfpmodule.c
Goldfish--这是Android为了模拟器所开发的一个虚拟硬件平台。Goldfish执行arm926T指令(在2.6.29中,goldfish也支持ATMv7指令),但是在实际的设备中,该虚拟平台的文件不会被编译。
arch/arm/mach-goldfish:
New: arch/arm/mach-goldfish/audio.c
New: arch/arm/mach-goldfish/board-goldfish.c
New: arch/arm/mach-goldfish/pdev_bus.c
New: arch/arm/mach-goldfish/pm.c
New: arch/arm/mach-goldfish/switch.c
New: arch/arm/mach-goldfish/timer.c
YAFFS2--和PC把文件存储在硬盘上不一样,移动设备一般把Flash作为存储设备。尤其是NAND flash应用非常广泛(绝大多数手机用的都是NAND flash,三星的一些手机使用的是OneNAND)。NAND flash具有低成本和高密度的优点。
YAFFS2是“Yet Another Flash File System, 2nd edition"的简称。它提供在Linux内核和NAND flash设备之前高效率的接口。 YAFFS2并没有包含在标准的Linux内核中, Google把它添加到了Android的kernel
fs/yaffs2:
New: fs/yaffs2/devextras.h
New: fs/yaffs2/Kconfig
New: fs/yaffs2/Makefile
New: fs/yaffs2/moduleconfig.h
New: fs/yaffs2/yaffs_checkptrw.c
New: fs/yaffs2/yaffs_checkptrw.h
New: fs/yaffs2/yaffs_ecc.c
New: fs/yaffs2/yaffs_ecc.h
New: fs/yaffs2/yaffs_fs.c
New: fs/yaffs2/yaffs_getblockinfo.h
New: fs/yaffs2/yaffs_guts.c
New: fs/yaffs2/yaffs_guts.h
New: fs/yaffs2/yaffsinterface.h
New: fs/yaffs2/yaffs_mtdif1.c
New: fs/yaffs2/yaffs_mtdif1.h
New: fs/yaffs2/yaffs_mtdif2.c
New: fs/yaffs2/yaffs_mtdif2.h
New: fs/yaffs2/yaffs_mtdif.c
New: fs/yaffs2/yaffs_mtdif.h
New: fs/yaffs2/yaffs_nand.c
New: fs/yaffs2/yaffs_nandemul2k.h
New: fs/yaffs2/yaffs_nand.h
New: fs/yaffs2/yaffs_packedtags1.c
New: fs/yaffs2/yaffs_packedtags1.h
New: fs/yaffs2/yaffs_packedtags2.c
New: fs/yaffs2/yaffs_packedtags2.h
New: fs/yaffs2/yaffs_qsort.c
New: fs/yaffs2/yaffs_qsort.h
New: fs/yaffs2/yaffs_tagscompat.c
New: fs/yaffs2/yaffs_tagscompat.h
New: fs/yaffs2/yaffs_tagsvalidity.c
New: fs/yaffs2/yaffs_tagsvalidity.h
New: fs/yaffs2/yportenv.h
Bluetooth-- Google为Bluetooth打上了patch,fix了一些Bluetooth的bug
drivers/bluetooth:
Chg: drivers/bluetooth/bfusb.c
Chg: drivers/bluetooth/bt3c_cs.c
Chg: drivers/bluetooth/btusb.c
Chg: drivers/bluetooth/hci_h4.c
Chg: drivers/bluetooth/hci_ll.c
Scheduler--对于Scheduler的改变非常小,我对它并没有去研究。
Chg: kernel/sched.c
New Android Functionality--除了fix一些bug以及其他一些小的更改,Android增加了一些新的功能,介绍如下:
IPC Binder-- The IPC Binder is an Inter-Process Communication(IPC) mechanism. It allows processes to provide services to other processes via a set of higher-level APIs than are available in standard Linux. An Internet search indicated that the Binder concept originated at Be, Inc., and then made its way into Palm's software, before Google wrote a new Binder for Android.
New: drivers/staging/android/binder.c
Low Memory Killer-- Android adds a low-memory killer that, each time it's called, scans the list of running Linux processes, and kills one. It was not clear in our cursory examination why Android adds a low-memory killer on top of the already existing one in the standard Linux kernel.
New: drivers/staging/android/lowmemorykiller.c
Ashmem-- Ashmem is an Anonymous SHared MEMory system that adds interfaces so processes can share named blocks of memory. As an example, the system could use Ashmem to store icons, which multiple processes could then access when drawing their UI. The advantage of Ashmem over traditional Linux shared memory is that it provides a means for the kernel to reclaim these shared memory blocks if they are not currently in use. If a process then tries to access a shared memory block the kernel has freed, it will receive an error, and will then need to reallocate the block and reload the data.
New: mm/ashmem.c
RAM Console and Log Device-- To aid in debugging, Android adds the ability to store kernel log messages to a RAM buffer. Additionally, Android adds a separate logging module so that user processes can read and write user log messages.
New: drivers/staging/android/ram_console.c
Android Debug Bridge-- Debugging embedded devices can best be described as challenging. To make debugging easier, Google created the Android Debug Bridge(ADB), which is a protocol that runs over a USB link between a hardware device running Android and a developer writing applications on a desktop PC.
drivers/usb/gadget:
New: drivers/usb/gadget/android.c
Chg: drivers/usb/gadget/composite.c
Chg: drivers/usb/gadget/f_acm.c
New: drivers/usb/gadget/f_acm.h
New: drivers/usb/gadget/f_adb.c
New: drivers/usb/gadget/f_adb.h
New: drivers/usb/gadget/f_mass_storage.c
New: drivers/usb/gadget/f_mass_storage.h
Android also adds a new real-time clock, switch support, and timed GPIO support. We list the impacted files for these new modules at the end of this document.
Power Management-- Power management is one of the most difficult pieces to get right in mobile devices, so we split it out into a group separate from the other pieces. It's interesting to note that Google added a new power management system to Linux, rather than reuse what already existed. We list the impacted files at the end of this document.
kernel/power:
New: kernel/power/consoleearlysuspend.c
New: kernel/power/earlysuspend.c
New: kernel/power/fbearlysuspend.c
Chg: kernel/power/main.c
Chg: kernel/power/power.h
Chg: kernel/power/process.c
New: kernel/power/userwakelock.c
New: kernel/power/wakelock.c
Miscellaneous Changes-- In addition to the above, we found a number of changes that could best be described as,'Miscellaneous.' Among other things, these changes include additional debugging support, keypad light controls, and management of TCP networking
... id-to-a-new-device/
如何在ARM Linux上使用FDT和initrd
这文章算是最近工作的备忘。
FDT是ARM
Linux最新的设备驱动程序信息表,使用FDT的内核,就不用像过去的内核那样,一个板子加一个mach的C文件,所有的设备信息可以记录在一个树状信息文件里面。
目前这方面资料比较少,我以AM335x处理器为例概括一下FDT的使用:
FDT仅仅是一个信息的目录和参数表,要使用某个功能内核中还必须有相应的驱动程序代码
FDT的源文件位置在:arch/arm/boot/dts,例如,TI的Beagle bone black,源文件是arch/arm/boot/dts/am335x_boneblack.dts
FDT在make ARCH=arm的时候就会自动生成,也可用make ARCH=arm
dtbs来生成,例如TI的Beagle bone black生成的文件是arch/arm/boot/dts/am335x_boneblack.dtb,这是一个二进制文件
要想新增你自定义的FDT,请修改arch/arm/boot/dts/Makefile,并在相应的Kconfig中增加config选项,例如,TI的Beagle
bone black,Kconfig的位置在arch/arm/mach-omap2/Kconfig
FDT的dtb文件由u-boot传递给内核,u-boot必须把这个文件拷贝到内核解压地址之后的某个位置,确保内核解压的时候不会覆盖,然后使用“bootm
[内核地址]- [dtb地址]”来启动内核
如果dtb文件不正确,对于3.10以上的内核,可能什么显示都没有,3.8内核,可能就显示到Uncompressing kernel......done
FDT的编写规则说明在Documentation/devicetree/bindings,不同的设备有相应的txt文件说明,其中的“compatible”可以作为关键字搜索驱动程序的源文件,例如,AM335x的GPIO,用“ti,omap4-gpio”为关键字,可以找到其代码位于drivers/gpio/gpio-omap.c
FDT可以包含子文件,比如am335x_boneblack.dts就包含了am33xx.dtsi,am335x-bone-common.dtsi
以一个例子来说明编写规则,我的板子上,I2C0上挂了一个音频CODEC,其地址是0x18,型号是TLV320AIC3104IRHBT。
先找到i2c0节点的位置,这在arch/arm/boot/dts/am33xx.dtsi中:
i2c0: i2c@44e0b000
{
compatible=
"ti,omap4-i2c";
#address-cells=
<1>;
#size-cells=
<0>;
ti,hwmods=
"i2c1";
reg=<0x44e0b000
0x1000>;
interrupts=
<70>;
status=
"disabled";
};
要在这个节点上挂东西,可以直接在am33xx.dtsi中挂,可以写成这样:
i2c0: i2c@44e0b000
{
compatible=
"ti,omap4-i2c";
#address-cells=
<1>;
#size-cells=
<0>;
ti,hwmods=
"i2c1";
reg=<0x44e0b000
0x1000>;
interrupts=
<70>;
status=
"okay";
tlv320aic3x: tlv320aic3x@18{
compatible="ti,tlv320aic3x";
reg=<0x18>;
status="okay";
AVDD-supply=<&ldo4_reg>;
IOVDD-supply=<&ldo4_reg>;
DRVDD-supply=<&ldo4_reg>;
DVDD-supply=<&ldo4_reg>;
};
};
其中compatible字串“ti,tlv320aic3x”是在Documentation/devicetree/bindings里面全文搜索“tlv320aic”获得的,“tlv320aic3x:
tlv320aic3x@18”遵循的是“标识符:名称@地址”的格式,前面的“i2c0:
i2c@44e0b000”也是这个格式。这里的标识符可以在包含这个文件的文件或这个文件的其他位置引用,因此,可以使用arch/arm/boot/dts/am335x-boneblack.dts包含arch/arm/boot/dts/am33xx.dtsi,然后在am335x-boneblack.dts里写:
&i2c0{
status="okay";
tlv320aic3x: tlv320aic3x@18{
compatible="ti,tlv320aic3x";
reg=<0x18>;
status="okay";
AVDD-supply=<&ldo4_reg>;
IOVDD-supply=<&ldo4_reg>;
DRVDD-supply=<&ldo4_reg>;
DVDD-supply=<&ldo4_reg>;
};
};
&i2c0表示引用了i2c0这个标识符,然后把括号里的内容挂载到标识符下,如果属性的名字相同,例如status出现两次,前面是“disabled”后面是“okay”,以后面的为准,引用标识符的次数不受限制。
也许一开始会觉得FDT的工作过程很神秘,但你只要用compatible的字串去全文搜索一下C文件,然后仔细阅读一下,就会发现很简单,没过几分钟你就可以自定义FDT节点的属性了。反倒是这些操作过程我没找到什么文档说,比较头痛,所以我把这些写出来,希望能给大家帮助。
下面说说initrd,initrd的用处是给内核一个初始的基本文件系统,用来加载内核模块之类的东西。很多人觉得嵌入式系统不需要initrd,也可以把initrd作为最终的根文件系统。我用initrd是用来校验真正的根文件系统,因为在嵌入式设备上,无法预测用户到底什么时候关机,可能会造成文件系统问题。
initrd可以用buildroot,像制作正常文件系统一样做,最后把根下的linuxrc换成一个例如下面这样的文件:
#!/bin/sh
/bin/echo Now Check SD Card
/sbin/fsck.ext4/dev/mmcblk0p5
虽然Documentation/initrd.txt里面说,内核会执行initrd里面的/sbin/init,但在我用的linux-3.8.13上,init/do_mounts_initrd.c里面,执行的是/linuxrc,不知道是不是文档没有更新过来。具体的调用顺序是,kernel_init(init/main.c)
> kernel_init_freeable(init/main.c)
> prepare_namespace(init/do_mounts.c)
> initrd_load(init/do_mounts_initrd.c)> handle_initrd
(init/do_mounts_initrd.c)。
在使用initrd的时候有几点需要注意的:
不建议在initrd上挂载别的东西,会引起未知的问题,貌似看到个文章说这个,找不到了
因为上面的这条,而且在initrd的时候,内核还没有挂载devtmpfs,因此建议使用静态设备节点,以AM335x为例(内核参数console=/dev/ttyO0,115200n8),必须的节点有:
/dev/null
/dev/console
/dev/ttyO0
这些节点可以用fakeroot之后mknod在buildroot的output/target/dev里创建,除了/dev/console,buildroot会自己创建,其他也可以写到buildroot的system/device_table.txt里面让buildroot自动创建:
#
/dev/null
c 666 0 0
1 3
-
-
-
/dev/ttyO0 c 600
0 0 250
0
-
-
-
如果你用的是Atmel的处理器,上面的ttyO0可能是ttyS0,如果是三星的,可能是ttySAC0,而且major和minor也会不一样,请自行解决。如果你像我一样要检验SD卡,那就还必须加上SD卡的分区对应的节点。
/linuxrc可以是个程序也可以是个脚本,脚本的话,命令写绝对路径,而且记得把/linuxrc的mode改为755
使用initrd只需要用u-boot把buildroot制作的文件系统映像拷贝到内存里,然后传递initrd=[地址],[容量]这样的参数给内核,例如initrd=0x81300000,8M,最终的root参数可以不变,例如root=/dev/mmcblk0p5,这表示最终的root是SD卡上扩展分区中的第一个逻辑分区。给两个内核参数的例子:
console=ttyO0,115200n8 root=/dev/mmcblk0p5 initrd=0x81300000,8M vram=16M
consoleblank=0
console=ttyO0,115200n8 initrd=0x81300000,8M root=/dev/nfs rw
nfsroot=192.168.5.226:/home/cdu/nfsroot
ip=192.168.5.222:192.168.5.226:192.168.5.1:255.255.255.0:core335x:eth0:off
vram=16M consoleblank=0
第一个不解释了,第二个表示使用initrd,同时使用nfsroot。
最后啰嗦一句,使用initrd需要在内核配置里打开支持,这个网上的资料太多了,我就不说在哪里了。