linux机制 linux基础知识点
大家好,今天小编来为大家解答linux机制这个问题,linux基础知识点很多人还不知道,现在让我们一起来看看吧!
linux基本原理
计算机体系结构:运算器 控制器 存储器 输入设备 输出设备
详解:存储即内存:编址的存储单元。即每一个存储单元在都有一个编址。
控制器告诉运算器加数在存储器的哪个存储单元。
poll:(拉的机制)CPU不停地查看谁发生的电信号
interrupt:(中断,即硬件通知机制)敲完键盘:键盘会通知CPU,CPU就来看看键盘干了什么事。
CPU通过控制芯片知道是哪个设备发出的信号。一根线上有不同的设备。
为了充分利用CPU,多任务利用,(想第一件事10秒,想第二件事10秒,然后接着想第一件事。那么第一件事的10秒记忆存储在内存中)。那么就需要划分了,cpu被切分为一个个slice。内存分成多个段。这都是由操作系统完成的。
32位操作系统:最多物理内存2^
程序:放在操作系统上,只要不删就一直存在。执行入口,进程:是有生命周期的,一定时间过后就消失。
.库:一堆的程序,自己不能独立执行,只提供调用接口,可被程序调用执行。
操作系统:有了操作系统之后,任何一个进程要跟硬件打交道,都得经过操作系统。操作系统通过最底层的调用:system call(系统调用)。然后封装之后,形成了库。
shell:人机交互接口
Linux内核学习笔记——内核页表隔离KPTI机制
Linux内核探索:深入理解KPTI机制对抗Meltdown& Spectre漏洞
在现代计算机体系结构中,Meltdown和Spectre两大漏洞利用了CPU预测执行的微妙特性,通过非法操作在rax被清零前传递关键信息。其攻击策略主要包括非法指令标记、rax清除、缓存中的信息泄露以及利用时间差异定位关键地址。针对这一挑战,Linux内核引入了KPTI(Kernel Page Table Isolation)机制,以KAISER为基础,旨在增强用户和内核空间的隔离,同时尽可能减少性能影响。
KPTI的核心在于精细化的页表管理。当运行用户应用时,只保留必要的内核异常映射,避免直接暴露敏感信息。设计了trampoline kernel PGD(跳板页全局目录),在用户权限进入内核时,负责执行转换,确保用户无法触及kernel data。
Unmap kernel mapping过程
从内核返回用户空间时,正常情况下kernel_exit会调用trampoline的退出处理,将内核映射替换为trampoline,这个过程被称为unmap kernel mapping,旨在强化隔离。
而TLB(Translation Lookaside Buffer)作为虚拟地址到物理地址转换的高速缓存,其刷新策略至关重要。在最初的系统设计中,每个进程独立的虚拟地址空间导致地址转换时的混乱,进程切换时会刷新TLB。引入KPTI后,操作系统区分了内核和用户空间,内核空间使用全局TLB以提高效率。
PCID和ASID的引入
为了应对KPTI需求,引入了PCID(进程上下文标识符)和ASID(地址空间标识符)。这样,每个进程都拥有独特的标识,TLB条目根据当前进程的ASID进行标记。
这样做的好处在于,内核空间不再是全局共享,确保了隔离性。同时,避免了在内核用户模式切换时刷新TLB,从而避免性能损失。
通过这些策略,KPTI机制有效地防止了恶意攻击,同时也为用户和内核提供了一层额外的安全防护层。
深入了解KPTI机制
若想深入了解KPTI的实现细节和影响,可以参考原文:[Link to original article]()
linux驱动程序结构框架及工作原理分别是什么
一、Linux device driver的概念\x0d\x0a\x0d\x0a系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能:\x0d\x0a\x0d\x0a1、对设备初始化和释放;\x0d\x0a\x0d\x0a2、把数据从内核传送到硬件和从硬件读取数据;\x0d\x0a\x0d\x0a3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据;\x0d\x0a\x0d\x0a4、检测和处理设备出现的错误。\x0d\x0a\x0d\x0a在Linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。\x0d\x0a\x0d\x0a已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。\x0d\x0a\x0d\x0a最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。\x0d\x0a\x0d\x0a二、实例剖析\x0d\x0a\x0d\x0a我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。把下面的C代码输入机器,你就会获得一个真正的设备驱动程序。\x0d\x0a\x0d\x0a由于用户进程是通过设备文件同硬件打交道,对设备文件的操作方式不外乎就是一些系统调用,如 open,read,write,close?,注意,不是fopen, fread,但是如何把系统调用和驱动程序关联起来呢?这需要了解一个非常关键的数据结构:\x0d\x0a\x0d\x0aSTruct file_operatiONs{\x0d\x0a\x0d\x0aint(*seek)(struct inode*,struct file*, off_t,int);\x0d\x0a\x0d\x0aint(*read)(struct inode*,struct file*, char,int);\x0d\x0a\x0d\x0aint(*write)(struct inode*,struct file*, off_t,int);\x0d\x0a\x0d\x0aint(*readdir)(struct inode*,struct file*, struct dirent*,int);\x0d\x0a\x0d\x0aint(*select)(struct inode*,struct file*, int,select_table*);\x0d\x0a\x0d\x0aint(*ioctl)(struct inode*,struct file*, unsined int,unsigned long);\x0d\x0a\x0d\x0aint(*mmap)(struct inode*,struct file*, struct vm_area_struct*);\x0d\x0a\x0d\x0aint(*open)(struct inode*,struct file*);\x0d\x0a\x0d\x0aint(*release)(struct inode*,struct file*);\x0d\x0a\x0d\x0aint(*fsync)(struct inode*,struct file*);\x0d\x0a\x0d\x0aint(*fasync)(struct inode*,struct file*,int);\x0d\x0a\x0d\x0aint(*check_media_change)(struct inode*,struct file*);\x0d\x0a\x0d\x0aint(*revalidate)(dev_t dev);\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0a这个结构的每一个成员的名字都对应着一个系统调用。用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数。这是linux的设备驱动程序工作的基本原理。既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域。\x0d\x0a\x0d\x0a下面就开始写子程序。\x0d\x0a\x0d\x0a#include基本的类型定义\x0d\x0a\x0d\x0a#include文件系统使用相关的头文件\x0d\x0a\x0d\x0a#include \x0d\x0a\x0d\x0a#include \x0d\x0a\x0d\x0a#include \x0d\x0a\x0d\x0aunsigned int test_major= 0;\x0d\x0a\x0d\x0astatic int read_test(struct inode*inode,struct file*file,char*buf,int count)\x0d\x0a\x0d\x0a{\x0d\x0a\x0d\x0aint left;用户空间和内核空间\x0d\x0a\x0d\x0aif(verify_area(VERIFY_WRITE,buf,count)==-EFAULT)\x0d\x0a\x0d\x0areturn-EFAULT;\x0d\x0a\x0d\x0afor(left= count; left> 0; left--)\x0d\x0a\x0d\x0a{\x0d\x0a\x0d\x0a__put_user(1,buf,1);\x0d\x0a\x0d\x0abuf++;\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0areturn count;\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0a这个函数是为read调用准备的。当调用read时,read_test()被调用,它把用户的缓冲区全部写1。buf是read调用的一个参数。它是用户进程空间的一个地址。但是在read_test被调用时,系统进入核心态。所以不能使用buf这个地址,必须用__put_user(),这是kernel提供的一个函数,用于向用户传送数据。另外还有很多类似功能的函数。请参考,在向用户空间拷贝数据之前,必须验证buf是否可用。这就用到函数verify_area。为了验证BUF是否可以用。\x0d\x0a\x0d\x0astatic int write_test(struct inode*inode,struct file*file,const char*buf,int count)\x0d\x0a\x0d\x0a{\x0d\x0a\x0d\x0areturn count;\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0astatic int open_test(struct inode*inode,struct file*file)\x0d\x0a\x0d\x0a{\x0d\x0a\x0d\x0aMOD_INC_USE_COUNT;模块计数加以,表示当前内核有个设备加载内核当中去\x0d\x0a\x0d\x0areturn 0;\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0astatic void release_test(struct inode*inode,struct file*file)\x0d\x0a\x0d\x0a{\x0d\x0a\x0d\x0aMOD_DEC_USE_COUNT;\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0a这几个函数都是空操作。实际调用发生时什么也不做,他们仅仅为下面的结构提供函数指针。\x0d\x0a\x0d\x0astruct file_operations test_fops={?\x0d\x0a\x0d\x0aread_test,\x0d\x0a\x0d\x0awrite_test,\x0d\x0a\x0d\x0aopen_test,\x0d\x0a\x0d\x0arelease_test,\x0d\x0a\x0d\x0a};\x0d\x0a\x0d\x0a设备驱动程序的主体可以说是写好了。现在要把驱动程序嵌入内核。驱动程序可以按照两种方式编译。一种是编译进kernel,另一种是编译成模块(modules),如果编译进内核的话,会增加内核的大小,还要改动内核的源文件,而且不能动态的卸载,不利于调试,所以推荐使用模块方式。\x0d\x0a\x0d\x0aint init_module(void)\x0d\x0a\x0d\x0a{\x0d\x0a\x0d\x0aint result;\x0d\x0a\x0d\x0aresult= register_chrdev(0,"test",&test_fops);对设备操作的整个接口\x0d\x0a\x0d\x0aif(result \x0d\x0a\x0d\x0a#include \x0d\x0a\x0d\x0a#include \x0d\x0a\x0d\x0a#include \x0d\x0a\x0d\x0amain()\x0d\x0a\x0d\x0a{\x0d\x0a\x0d\x0aint testdev;\x0d\x0a\x0d\x0aint i;\x0d\x0a\x0d\x0achar buf[10];\x0d\x0a\x0d\x0atestdev= open("/dev/test",O_RDWR);\x0d\x0a\x0d\x0aif( testdev==-1)\x0d\x0a\x0d\x0a{\x0d\x0a\x0d\x0aprintf("Cann't open file\n");\x0d\x0a\x0d\x0aexit(0);\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0aread(testdev,buf,10);\x0d\x0a\x0d\x0afor(i= 0; i< 10;i++)\x0d\x0a\x0d\x0aprintf("%d\n",buf[i]);\x0d\x0a\x0d\x0aclose(testdev);\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0a编译运行,看看是不是打印出全1 \x0d\x0a\x0d\x0a以上只是一个简单的演示。真正实用的驱动程序要复杂的多,要处理如中断,DMA,I/O port等问题。这些才是真正的难点。上述给出了一个简单的字符设备驱动编写的框架和原理,更为复杂的编写需要去认真研究LINUX内核的运行机制和具体的设备运行的机制等等。希望大家好好掌握LINUX设备驱动程序编写的方法。