centos binutils(centos ssh配置)
老铁们,大家好,相信还有很多朋友对于centos binutils和centos ssh配置的相关问题不太懂,没关系,今天就由我来为大家分享分享centos binutils以及centos ssh配置的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!
CentOS安装Redis单实例
1、创建安装目录
为了方便管理我们一般统一软件的安装目录,这里选择安装的目录是:
/usr/local/soft
2、下载Redis
我们通过wget命令从Redis官网下载压缩包->\
当前最新版本下载地址->
cd/usr/local/softwget、解压tar-zxvfredis-6.2.4.tar.gz4、安装gcc依赖
Redis是C语言编写,编译需要GCC\Redis6.x.x版本支持了多线程,需要gcc的版本大于4.9,我们需要查看默认GCC版本,如果版本过低则需要升级
gcc-v
我的新安装的虚拟机CentOS显示->
证明我的没有安装gcc,安装gcc->
yuminstallgcc
再次查看安装后的版本,发现是4.8.5,这个是CentOS默认的版本,我们需要对gcc进行升级->
yum-yinstallcentos-release-sclyum-yinstalldevtoolset-9-gccdevtoolset-9-gcc-c++devtoolset-9-binutilssclenabledevtoolset-9bashecho"source/opt/rh/devtoolset-9/enable">>/etc/profile
查看升级后的版本->
5、编译安装cdredis-6.2.4/srcmakeinstall
编译过程如下:
看到如下结果输出则编译成功
或者在src目录下出现服务端和客户端的脚本
redis-sentinelredis-serverredis-cli6、修改配置文件
Redis的配置文件在解压目录下的redis.conf
6.1首先设置后台启动,防止窗口一关闭服务就挂掉
默认后台启动参数为no
#BydefaultRedisdoesnotrunasadaemon.Use'yes'ifyouneedit.#NotethatRediswillwriteapidfilein/var/run/redis.pidwhendaemonized.#WhenRedisissupervisedbyupstartorsystemd,thisparameterhasnoimpact.daemonizeno
修改成yes
#BydefaultRedisdoesnotrunasadaemon.Use'yes'ifyouneedit.#NotethatRediswillwriteapidfilein/var/run/redis.pidwhendaemonized.#WhenRedisissupervisedbyupstartorsystemd,thisparameterhasnoimpact.daemonizeyes6.2允许其他主机访问
根据Redis的文档配置注释,我们要运行其他主机访问有多种方式:
可以选择配置访问主机的IPaddress
bind-::相当于允许所有其它主机访问
bind0.0.0.0相当于允许所有其它主机访问
直接注释相当于允许所有其它主机访问
#bind192.168.1.10010.0.0.1#listensontwospecificIPv4addresses#bind127.0.0.1::1#listensonloopbackIPv4andIPv6#bind*-::*#likethedefault,allavailableinterfaces
我的处理方式,安装文档的注释来配置:
6.3配置访问密码
如果是要考虑安全性,一定要配置密码,找到requirepass配置处,新增如下配置(阿里云等云服务其外网访问一定要配置,作者被黑过,整台服务器重启都无法重启,损失惨重,但是穷,官方处理需要Money,建议这里一定要谨慎)
tar-zxvfredis-6.2.4.tar.gz07、启动Redis
使用redis-server来启动,启动的方式如下:
tar-zxvfredis-6.2.4.tar.gz1
或者这个也一样:
tar-zxvfredis-6.2.4.tar.gz2
查看端口是否启动成功:
tar-zxvfredis-6.2.4.tar.gz38、客户端
进入客户端的方式如下:
tar-zxvfredis-6.2.4.tar.gz49、停止Redis
停止Redis有两种方式:
方式一,在客户端中执行tar-zxvfredis-6.2.4.tar.gz5
tar-zxvfredis-6.2.4.tar.gz5
方式二,暴力kill-9
tar-zxvfredis-6.2.4.tar.gz610、配置别名
为了方便启动Redis和进入客户端,我们可以通过配置别名来实现
tar-zxvfredis-6.2.4.tar.gz7
添加如下配置:
注意''很重要
redis与rcli后面的=两边不能有空格
aliasredis='tar-zxvfredis-6.2.4.tar.gz1'aliasrcli='tar-zxvfredis-6.2.4.tar.gz4'
使配置生效:
tar-zxvfredis-6.2.4.tar.gz9
现在我们可以通过redis启动Redis服务,使用rcli进入Redis客户端:
centos7怎么编译安装gcc-c++
方法/步骤
1
yum install glibc-static libstdc++-static-y
安装c和c++的静态库(据说如果系统中缺少libc.a和libstdc++.a编译时会出错,但是我没有那么多闲情逸致去试,实践过的朋友可以回复一下,分享一下经验,让大家都长长见识)
2
下载解压gcc,我的gcc目录是gcc-4.8.0
3
进入gcc目录,执行:
./contrib/download_prerequisites
这个神奇的脚本文件会帮我们下载、配置、安装那三个依赖的库。可以节约我们大量的时间和精力。
4
你以为这三个库自动下载了、自动make install了就没事了吗?错!
很多人在编译gcc的时候出现各种奇奇怪怪的错误就是这步没有做好。
它们还不在.so文件的搜索路径里面,需要加进去,最后切记切记一定要执行一下ldconfig。
大致做法为:
1,找到你的共享库文件被install到哪个目录了(updatedb+locate命令)。
2,如果你的库不是直接放在/lib或/usr/lib下,需要修改/etc/ld.so.conf文件,加入你的共享库的路径
3,如果在2中添加了共享库路径,切记要执行一下ldconfig,更新响应cache文件让系统能找到你的共享库。
5
建立临时目录,这个目录用以存放编译时的大量临时文件,是文档要求中必须的。
我是在gcc-4.8.0下建立了一个名为gcc-build-4.8.0的目录,进入它。
mkdir gcc-build-4.8.0
cd gcc-build-4.8.0
配置gcc编译选项
6
强烈建议阅读INSTALL目录下的说明文档,尤其是configure.html,以确定你的编译选项。
比较基本的选项有--enable-languages,说明你要让你的gcc支持那些语言,--disable-multilib不生成编译为其他平台可执行代码的交叉编译器。--disable-checking生成的编译器在编译过程中不做额外检查,也可以使用--enable-checking=xxx来增加一些检查。
网上还说了什么--with-gmp、--with-mpfr、--with-mpc这三个选项,但是如果你3,4步做好了,就不要配了,反之你还是老实点吧别抱侥幸心理了。
调用gcc-4.8.0目录下的configure文件:
例如:
../configure--enable-checking=release--enable-languages=c,c++--disable-multilib
7
执行
../make#不解释
执行编译命令(#在8核的虚拟机上进行编译,每个核分配2个编译任务)
make-j16
make install编译过程CPU核基本100%占用,整个编译用时11分50秒。
检查gcc版本
#你就等吧少年,建议晚上睡觉前做
当然上面三步一定要在前一步顺利结束的情况下进行,如果哪一步出错了,结果都显示error了,就不要再做后面的了。在shell的输出里搜索"error"看具体的出错点是什么,baidu、google一下为什么。
如果你求稳的话,可以在make install之前先make check一下。
centos 6.6怎么升级内核
1.准备工作
确认内核及版本信息
[root@hostname~]# uname-r
2.6.32-220.el6.x86_64
[root@hostname~]# cat/etc/centos-release
CentOS release 6.5(Final)
安装软件
编译安装新内核,依赖于开发环境和开发库
# yum grouplist//查看已经安装的和未安装的软件包组,来判断我们是否安装了相应的开发环境和开发库;
# yum groupinstall"Development Tools"//一般是安装这两个软件包组,这样做会确定你拥有编译时所需的一切工具
# yum install ncurses-devel//你必须这样才能让 make*config这个指令正确地执行
# yum install qt-devel//如果你没有 X环境,这一条可以不用
# yum install hmaccalc zlib-devel binutils-devel elfutils-libelf-devel//创建 CentOS-6内核时需要它们
如果当初安装系统是选择了Software workstation,上面的安装包几乎都已包含。
2.编译内核
获取并解压内核源码,配置编译项
Linux内核版本有两种:稳定版和开发版,Linux内核版本号由3个数字组成:r.x.y
r:主版本号
x:次版本号,偶数表示稳定版本;奇数表示开发中版本。
y:修订版本号,表示修改的次数
去 首页,可以看到有stable, longterm等版本,longterm是比stable更稳定的版本,会长时间更新,因此我选择 3.10.58。
[root@sean~]#wget
[root@sean~]# tar-xf linux-3.10.58.tar.xz-C/usr/src/
[root@sean~]# cd/usr/src/linux-3.10.58/
[root@sean linux-3.10.58]# cp/boot/config-2.6.32-220.el6.x86_64.config
我们在系统原有的内核配置文件的基础上建立新的编译选项,所以复制一份到当前目录下,命名为.config。接下来继续配置:
[root@sean linux-3.10.58]# sh-c'yes""| make oldconfig'
HOSTCC scripts/basic/fixdep
HOSTCC scripts/kconfig/conf.o
SHIPPED scripts/kconfig/zconf.tab.c
SHIPPED scripts/kconfig/zconf.lex.c
SHIPPED scripts/kconfig/zconf.hash.c
HOSTCC scripts/kconfig/zconf.tab.o
HOSTLD scripts/kconfig/conf
scripts/kconfig/conf--oldconfig Kconfig
.config:555:warning: symbol value'm' invalid for PCCARD_NONSTATIC
.config:2567:warning: symbol value'm' invalid for MFD_WM8400
.config:2568:warning: symbol value'm' invalid for MFD_WM831X
.config:2569:warning: symbol value'm' invalid for MFD_WM8350
.config:2582:warning: symbol value'm' invalid for MFD_WM8350_I2C
.config:2584:warning: symbol value'm' invalid for AB3100_CORE
.config:3502:warning: symbol value'm' invalid for MMC_RICOH_MMC
*
* Restart config...
*
*
* General setup
*
......
XZ decompressor tester(XZ_DEC_TEST) [N/m/y/?](NEW)
Averaging functions(AVERAGE) [Y/?](NEW) y
CORDIC algorithm(CORDIC) [N/m/y/?](NEW)
JEDEC DDR data(DDR) [N/y/?](NEW)
#
# configuration written to.config
make oldconfig会读取当前目录下的.config文件,在.config文件里没有找到的选项则提示用户填写,然后备份.config文件为.config.old,并生成新的.config文件,参考
有的文档里介绍使用make memuconfig,它便是根据需要定制模块,类似界面如下:(在此不需要)
开始编译
[root@sean linux-3.10.58]# make-j4 bzImage//生成内核文件
[root@sean linux-3.10.58]# make-j4 modules//编译模块
[root@sean linux-3.10.58]# make-j4 modules_install//编译安装模块
-j后面的数字是线程数,用于加快编译速度,一般的经验是,逻辑CPU,就填写那个数字,例如有8核,则为-j8。(modules部分耗时30多分钟)
安装
[root@sean linux-3.10.58]# make install
实际运行到这一步时,出现ERROR: modinfo: could not find module vmware_balloon,但是不影响内核安装,是由于vsphere需要的模块没有编译,要避免这个问题,需要在make之前时修改.config文件,加入
HYPERVISOR_GUEST=yCONFIG_VMWARE_BALLOON=m
(这一部分比较容易出问题,参考下文异常部分)
修改grub引导,重启
安装完成后,需要修改Grub引导顺序,让新安装的内核作为默认内核。
编辑 grub.conf文件,
vi/etc/grub.conf
#boot=/dev/sda
default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title CentOS(3.10.58)
root(hd0,0)
...
数一下刚刚新安装的内核在哪个位置,从0开始,然后设置default为那个数字,一般新安装的内核在第一个位置,所以设置default=0。
重启reboot:
boot-with-new-kernel
确认当内核版本
[root@sean~]# uname-r
3.10.58
升级内核成功!
3.异常
编译失败(如缺少依赖包)
可以先清除,再重新编译:
# make mrproper#完成或者安装过程出错,可以清理上次编译的现场
# make clean
在vmware虚拟机上编译,出现类似下面的错误
[root@sean linux-3.10.58]# make install
sh/usr/src/linux-3.10.58/arch/x86/boot/install.sh 3.10.58 arch/x86/boot/bzImage\
System.map"/boot"
ERROR: modinfo: could not find module vmware_balloon
可以忽略,如果你有强迫症的话,尝试以下办法:
要在vmware上需要安装VMWARE_BALLOON,可直接修改.config文件,但如果vi直接加入CONFIG_VMWARE_BALLOON=m依然是没有效果的,因为它依赖于HYPERVISOR_GUEST=y。如果你不知道这层依赖关系,通过make menuconfig后,Device Drivers-> MISC devices下是找不到VMware Balloon Driver的。(手动vi.config修改HYPERVISOR_GUEST后,便可以找到这一项),另外,无论是通过make menuconfig或直接vi.config,最后都要运行sh-c'yes""| make oldconfig'一次得到最终的编译配置选项。
然后,考虑到vmware_balloon可能在这个版本里已更名为vmw_balloon,通过下面的方法保险起见:
# cd/lib/modules/3.10.58/kernel/drivers/misc/
# ln-s vmw_balloon.ko vmware_balloon.ko#建立软连接
其实,针对安装docker的内核编译环境,最明智的选择是使用sciurus帮我们配置好的.config文件。
也建议在make bzImage之前,运行脚本check-config.sh检查当前内核运行docker所缺失的模块。
当提示缺少其他module时如NF_NAT_IPV4时,也可以通过上面的方法解决,然后重新编译。
4.几个重要的Linux内核文件介绍
在网络中,不少服务器采用的是Linux系统。为了进一步提高服务器的性能,可能需要根据特定的硬件及需求重新编译Linux内核。编译Linux内核,需要根据规定的步骤进行,编译内核过程中涉及到几个重要的文件。比如对于RedHat Linux,在/boot目录下有一些与Linux内核有关的文件,进入/boot执行:ls–l。编译过RedHat Linux内核的人对其中的System.map、vmlinuz、initrd-2.4.7-10.img印象可能比较深刻,因为编译内核过程中涉及到这些文件的建立等操作。那么这几个文件是怎么产生的?又有什么作用呢?
(1)vmlinuz
vmlinuz是可引导的、压缩的内核。“vm”代表“Virtual Memory”。Linux支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制。Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,它位于/boot/vmlinuz,它一般是一个软链接。
vmlinuz的建立有两种方式。
一是编译内核时通过“make zImage”创建,然后通过:“cp/usr/src/linux-2.4/arch/i386/linux/boot/zImage/boot/vmlinuz”产生。zImage适用于小内核的情况,它的存在是为了向后的兼容性。
二是内核编译时通过命令make bzImage创建,然后通过:“cp/usr/src/linux-2.4/arch/i386/linux/boot/bzImage/boot/vmlinuz”产生。
bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”。 bzImage中的b是“big”意思。
zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码。所以你不能用gunzip或 gzip–dc解包vmlinuz。
内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。
vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
(2) initrd-x.x.x.img
initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。比如,使用的是scsi硬盘,而内核vmlinuz中并没有这个scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/modules下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题。initrd-2.4.7-10.img是用gzip压缩的文件,下面来看一看这个文件的内容。
initrd实现加载一些模块和安装文件系统等。
initrd映象文件是使用mkinitrd创建的。mkinitrd实用程序能够创建initrd映象文件。这个命令是RedHat专有的。其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd
下面的命令创建initrd映象文件:
(3) System.map
System.map是一个特定内核的内核符号表。它是你当前运行的内核的System.map的链接。
内核符号表是怎么创建的呢? System.map是由“nm vmlinux”产生并且不相关的符号被滤出。对于本文中的例子,编译内核时,System.map创建在/usr/src/linux-2.4/System.map。像下面这样:
nm/boot/vmlinux-2.4.7-10> System.map
下面几行来自/usr/src/linux-2.4/Makefile:
nm vmlinux| grep-v'(compiled)|(.o
)|([aUw])|(..ng
)|(LASH[RL]DI)'| sort> System.map
然后复制到/boot:
cp/usr/src/linux/System.map/boot/System.map-2.4.7-10
在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号。
Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名。比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。
对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,当内核运行时使用地址。
然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号。这由符号表来完成,符号表是所有符号连同它们的地址的列表。Linux符号表使用到2个文件:/proc/ksyms和System.map。
/proc/ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map具有的是错误的符号信息。每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核本身并不真正使用System.map,但其它程序比如klogd, lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。
另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。
Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map:
/boot/System.map
/System.map
/usr/src/linux/System.map
System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。