linux 驱动中断?linux驱动程序

linux驱动实践:中断处理中的【工作队列】workqueue是什

Linux工作队列是Linux内核中的一种异步执行任务的机制,旨在提高系统的并发能力和响应速度,是编写高效且可靠的Linux内核代码的重要组成部分。在Linux内核中,当需要处理一些不是紧急的、需要后台执行的任务时,通过将这些任务加入到工作队列中,内核将计划适当的时间进行执行。工作队列异步执行的特点,避免了任务阻塞主线程,提升了系统响应速度和并发能力。工作队列具有广泛的使用场景,包括定时器事件、网络I/O事件、驱动程序事件等。

在Linux中断处理中,工作队列能够发挥重要作用。当内核需要异步执行任务时,可以利用工作队列机制。Linux中断处理中,某些操作可能阻塞中断处理程序,如磁盘访问操作。为避免此类阻塞,工作队列允许中断处理程序将任务提交给工作队列,在稍后时间异步执行。这使得中断处理程序可以立即返回,不阻塞其他中断处理程序执行。工作队列通过一组线程,同时执行多个任务,当队列中有任务时,内核自动调度线程执行任务。

工作队列的实现基于worker线程池,能有效提高系统吞吐量和响应速度,适用于需要异步任务调度的场景。工作队列和工作者线程之间形成相互依存的关系,通过协同工作处理系统任务。工作队列作为先进先出的任务列表,包含待执行任务,而工作者线程实际执行这些任务。当有新任务加入队列时,工作者线程从队列中取出并执行。工作者线程由内核创建,数量可根据系统负载调整。任务量增加时,增加工作者线程以加快任务处理速度,反之减少以节省资源。

Linux内核使用struct workqueue_struct结构体表示工作队列,并通过特定函数创建和销毁。创建时,指定队列名称等属性。销毁时,内核负责清理队列资源。工作者线程的创建和销毁由内核自动管理,系统在高负载时增加线程数量以处理更多任务,负载降低时减少以节省资源。在内核中,展示创建和销毁工作者线程的示例代码,说明如何通过特定函数创建队列和工作对象,提交工作对象到队列中,以及在模块初始化与退出期间的操作。

工作队列中的任务由工作者线程按需执行,不保证按提交顺序执行。为处理网络中断,工作队列提供了异步处理机制。在中断处理程序中,初始化工作结构体并将其添加到工作队列中,立即返回,避免阻塞。工作队列在后台异步处理工作对象,执行回调函数处理网络中断逻辑。

工作队列相比其他机制具有特定优势和缺点,如提高并发处理能力、减少任务阻塞等,但同时也存在资源管理、任务依赖等挑战。与Tasklet机制对比,两者在实现方式和应用场景上有所区别。选择何种机制取决于具体需求和场景。

总结,Linux工作队列是内核中高效执行异步任务的关键机制,通过优化系统并发性和响应速度,为开发者提供强大的工具。正确使用工作队列,注意相关问题,有助于在不同领域如云计算、人工智能、物联网等场景中满足各种需求。

《Linux设备驱动程序》(十六)-中断处理

设备与处理器之间的工作通常来说是异步,设备数据要传递给处理器通常来说有以下几种方法:轮询、等待和中断。

让CPU进行轮询等待总是不能让人满意,所以通常都采用中断的形式,让设备来通知CPU读取数据。

2.6内核的函数参数与现在的参数有所区别,这里都主要介绍概念,具体实现方法需要结合具体的内核版本。

request_irq函数申请中断,返回0表示申请成功,其他返回值表示申请失败,其具体参数解释如下:

flags掩码可以使用以下几个:

快速和慢速处理例程:现代内核中基本没有这两个概念了,使用SA_INTERRUPT位后,当中断被执行时,当前处理器的其他中断都将被禁止。通常不要使用SA_INTERRUPT标志位,除非自己明确知道会发生什么。

共享中断:使用共享中断时,一方面要使用SA_SHIRQ位,另一个是request_irq中的dev_id必须是唯一的,不能为NULL。这个限制的原因是:内核为每个中断维护了一个共享处理例程的列表,例程中的dev_id各不相同,就像设备签名。如果dev_id相同,在卸载的时候引起混淆(卸载了另一个中断),当中断到达时会产生内核OOP消息。

共享中断需要满足以下一个条件才能申请成功:

当不需要使用该中断时,需要使用free_irq释放中断。

通常我们会在模块加载的时候申请安装中断处理例程,但书中建议:在设备第一次打开的时候安装,在设备最后一次关闭的时候卸载。

如果要查看中断触发的次数,可以查看/proc/interrupts和/proc/stat。

书中讲述了如何自动检测中断号,在嵌入式开发中通常都是查看原理图和datasheet来直接确定。

自动检测的原理如下:驱动程序通知设备产生中断,然后查看哪些中断信号线被触发了。Linux提供了以下方法来进行探测:

探测工作耗时较长,建议在模块加载的时候做。

中断处理函数和普通函数其实差不多,唯一的区别是其运行的中断上下文中,在这个上下文中有以下注意事项:

中断处理函数典型用法如下:

中断处理函数的参数和返回值含义如下:

返回值主要有两个:IRQ_NONE和IRQ_HANDLED。

对于中断我们是可以进行开启和关闭的,Linux中提供了以下函数操作单个中断的开关:

该方法可以在所有处理器上禁止或启用中断。

需要注意的是:

如果要关闭当前处理器上所有的中断,则可以调用以下方法:

local_irq_save会将中断状态保持到flags中,然后禁用处理器上的中断;如果明确知道中断没有在其他地方被禁用,则可以使用local_irq_disable,否则请使用local_irq_save。

locat_irq_restore会根据上面获取到flags来恢复中断;local_irq_enable会无条件打开所有中断。

在中断中需要做一些工作,如果工作内容太多,必然导致中断处理所需的时间过长;而中断处理又要求能够尽快完成,这样才不会影响正常的系统调度,这两个之间就产生了矛盾。

现在很多操作系统将中断分为两个部分来处理上面的矛盾:顶半部和底半部。

顶半部就是我们用request_irq来注册的中断处理函数,这个函数要求能够尽快结束,同时在其中调度底半部,让底半部在之后来进行后续的耗时工作。

顶半部就不再说明了,就是上面的中断处理函数,只是要求能够尽快处理完成并返回,不要处理耗时工作。

底半部通常使用tasklet或者工作队列来实现。

tasklet的特点和注意事项:

工作队列的特点和注意事项:

linux驱动中断,程序运行几个小时后系统崩溃

中断与定时器:

中断的概念:指CPU在执行过程中,出现某些突发事件急待处理,CPU暂停执行当前程序,转去处理突发事件

,处理完后CPU又返回原程序被中断的位置继续执行

中断的分类:内部中断和外部中断

内部中断:中断源来自CPU内部(软件中断指令、溢出、触发错误等)

外部中断:中断源来自CPU外部,由外设提出请求

屏蔽中断和不可屏蔽中断:

可屏蔽中断:可以通过屏蔽字被屏蔽,屏蔽后,该中断不再得到响应

不可平布中断:不能被屏蔽

向量中断和非向量中断:

向量中断:CPU通常为不同的中断分配不同的中断号,当检测到某中断号的中断到来后,就自动跳转到与该中断号对应的地址执行

非向量中断:多个中断共享一个入口地址。进入该入口地址后再通过软件判断中断标志来识别具体哪个是中断

也就是说向量中断由软件提供中断服务程序入口地址,非向量中断由软件提供中断入口地址

/*典型的非向量中断首先会判断中断源,然后调用不同中断源的中断处理程序*/

irq_handler()

{

...

int int_src= read_int_status();/*读硬件的中断相关寄存器*/

switch(int_src){//判断中断标志

case DEV_A:

dev_a_handler();

break;

case DEV_B:

dev_b_handler();

break;

...

default:

break;

}

...

}

定时器中断原理:

定时器在硬件上也以来中断,PIT(可编程间隔定时器)接收一个时钟输入,

当时钟脉冲到来时,将目前计数值增1并与已经设置的计数值比较,若相等,证明计数周期满,产生定时器中断,并

复位计数值。

如下图所示:

Linux中断处理程序架构:

Linux将中断分为:顶半部(top half)和底半部(bottom half)

顶板部:完成尽可能少的比较紧急的功能,它往往只是简单的读取寄存器中的中断状态并清除中断标志后就进行

“登记中断”(也就是将底半部处理程序挂在到设备的底半部执行队列中)的工作

特点:响应速度快

底半部:中断处理的大部分工作都在底半部,它几乎做了中断处理程序的所有事情。

特点:处理相对来说不是非常紧急的事件

小知识:Linux中查看/proc/interrupts文件可以获得系统中断的统计信息。

如下图所示:

第一列是中断号第二列是向CPU产生该中断的次数

介绍完相关基础概念后,让我们一起来探讨一下Linux中断编程

Linux中断编程:

1.申请和释放中断

申请中断:

int request_irq(unsigned int irq,irq_handler_t handler,

unsigned long irqflags,const char*devname,void*dev_id)

参数介绍:irq是要申请的硬件中断号

handler是向系统登记的中断处理程序(顶半部),是一个回调函数,中断发生时,系统调用它,将

dev_id参数传递给它

irqflags:是中断处理的属性,可以指定中断的触发方式和处理方式:

触发方式:IRQF_TRIGGER_RISING、IRQF_TRIGGER_FALLING、IRQF_TRIGGER_HIGH、IRQF_TRIGGER_LOW

处理方式:IRQF_DISABLE表明中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断

IRQF_SHARED表示多个设备共享中断,dev_id在中断共享时会用到,一般设置为NULL

返回值:为0表示成功,返回-EINVAL表示中断号无效,返回-EBUSY表示中断已经被占用,且不能共享

顶半部的handler的类型irq_handler_t定义为

typedef irqreturn_t(*irq_handler_t)(int,void*);

typedef int irqreturn_t;

2.释放IRQ

有请求当然就有释放了

void free_irq(unsigned int irq,void*dev_id);

参数定义与request_irq类似

3.使能和屏蔽中断

void disable_irq(int irq);//等待目前中断处理完成(最好别在顶板部使用,你懂得)

void disable_irq_nosync(int irq);//立即返回

void enable_irq(int irq);//

4.屏蔽本CPU内所有中断:

#define local_irq_save(flags)...//禁止中断并保存状态

void local_irq_disable(void);//禁止中断,不保存状态

下面来分别介绍一下顶半部和底半部的实现机制

底半部机制:

简介:底半部机制主要有tasklet、工作队列和软中断

1.底半部是想方法之一tasklet

(1)我们需要定义tasklet机器处理器并将两者关联

例如:

void my_tasklet_func(unsigned long);/*定义一个处理函数*/

DECLARE_TASKLET(my_tasklet,my_tasklet_func,data);

/*上述代码定义了名为my_tasklet的tasklet并将其余

my_tasklet_func()函数绑定,传入的参数为data*/

(2)调度

tasklet_schedule(&my_tasklet);

//使用此函数就能在是当的时候进行调度运行

tasklet使用模板:

/*定义tasklet和底半部函数并关联*/

void xxx_do_tasklet(unsigned long);

DECLARE_TASKLET(xxx_tasklet,xxx_do_tasklet,0);

/*中断处理底半部*/

void xxx_do_tasklet(unsigned long)

{

...

}

/*中断处理顶半部*/

irqreturn_t xxx_interrupt(int irq,void*dev_id)

{

...

tasklet_schedule(&xxx_tasklet);//调度地板部

...

}

/*设备驱动模块加载函数*/

int __init xxx_init(void)

{

...

/*申请中断*/

result= request_irq(xxx_irq,xxx_interrupt,

IRQF_DISABLED,"xxx",NULL);

...

return IRQ_HANDLED;

}

/*设备驱动模块卸载函数*/

void __exit xxx_exit(void)

{

...

/*释放中断*/

free_irq(xxx_irq,xxx_interrupt);

...

}

2.底半部实现方法之二---工作队列

使用方法和tasklet类似

相关操作:

struct work_struct my_wq;/*定义一个工作队列*/

void my_wq_func(unsigned long);/*定义一个处理函数*/

通过INIT_WORK()可以初始化这个工作队列并将工作队列与处理函数绑定

INIT_WORK(&my_wq,(void(*)(void*))my_wq_func,NULL);

/*初始化工作队列并将其与处理函数绑定*/

schedule_work(&my_wq);/*调度工作队列执行*/

/*工作队列使用模板*/

/*定义工作队列和关联函数*/

struct work_struct(unsigned long);

void xxx_do_work(unsigned long);

/*中断处理底半部*/

void xxx_do_work(unsigned long)

{

...

}

/*中断处理顶半部*/

/*中断处理顶半部*/

irqreturn_t xxx_interrupt(int irq,void*dev_id)

{

...

schedule_work(&my_wq);//调度底半部

...

return IRQ_HANDLED;

}

/*设备驱动模块加载函数*/

int xxx_init(void)

{

...

/*申请中断*/

result= request_irq(xxx_irq,xxx_interrupt,

IRQF_DISABLED,"xxx",NULL);

...

/*初始化工作队列*/

INIT_WORK(&my_wq,(void(*)(void*))xxx_do_work,NULL);

}

/*设备驱动模块卸载函数*/

void xxx_exit(void)

{

...

/*释放中断*/

free_irq(xxx_irq,xxx_interrupt);

...

}

阅读剩余
THE END