linux 线程 信号,linux基础知识点

这篇文章给大家聊聊关于linux 线程 信号,以及linux基础知识点对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。

linux多线程信号量sem_wait()到sem_post()之间逻辑代码是

在处理Linux多线程中的信号量操作,如`sem_wait()`与`sem_post()`之间的逻辑代码,确保共享变量的安全访问,确实需要增加互斥锁。此操作在生产者线程与消费者线程数量大于2个时显得尤为重要。以下分析生产者与消费者函数中的关键问题与解决策略。

在生产者函数中,不同线程可能会相互覆盖数据,导致数据错乱或相同。这种混乱可能源于多个线程同时访问并修改同一共享资源,引发数据竞争问题。为避免这种情况,我们需确保在`sem_wait()`调用前获取互斥锁。当`sem_wait()`调用成功后,生产者可以安全地申请新空间,而不必担心被其他线程干扰。同样,当生产者完成空间申请后,通过`sem_post()`释放信号量,这时也应在释放互斥锁之后执行,以确保其他线程能正确响应信号量的变化。

消费者函数中,链表删除操作可能出现问题,或重复释放已删除的节点,这也与共享资源的访问控制不当有关。消费者线程在从链表中删除节点时,应确保在执行删除操作前锁定互斥锁,以防止其他线程在删除操作进行时访问或修改该节点。同时,当消费者释放资源时,同样需要在释放互斥锁后进行,确保资源释放的正确性和线程间的协调。

为了确保资源的正确管理,将生产者申请空间的操作放到`while`循环的开头并将其移出,意味着在每次循环开始时都检查信号量状态,避免了不必要的重复操作。同时,将释放空间的部分移出`while`循环,意味着当`while`循环退出时才进行资源释放,从而确保在正确的时间点释放资源。

综上所述,增加互斥锁作为`sem_wait()`与`sem_post()`之间的关键控制点,能够有效防止多线程环境中由于数据竞争导致的错误,确保了线程间的协同工作以及资源的正确管理。正确处理这些细节,能够显著提升系统的稳定性和效率。

Linux信号量

信号量是包含一个非负整数型的变量,并且带有两个原子操作wait和signal。Wait还可以被称为down、P或lock,signal还可以被称为up、V、unlock或post。在UNIX的API中(POSIX标准)用的是wait和post。

对于wait操作,如果信号量的非负整形变量S大于0,wait就将其减1,如果S等于0,wait就将调用线程阻塞;对于post操作,如果有线程在信号量上阻塞(此时S等于0),post就会解除对某个等待线程的阻塞,使其从wait中返回,如果没有线程阻塞在信号量上,post就将S加1.

由此可见,S可以被理解为一种资源的数量,信号量即是通过控制这种资源的分配来实现互斥和同步的。如果把S设为1,那么信号量即可使多线程并发运行。另外,信号量不仅允许使用者申请和释放资源,而且还允许使用者创造资源,这就赋予了信号量实现同步的功能。可见信号量的功能要比互斥量丰富许多。

POSIX信号量是一个sem_t类型的变量,但POSIX有两种信号量的实现机制:无名信号量和命名信号量。无名信号量只可以在共享内存的情况下,比如实现进程中各个线程之间的互斥和同步,因此无名信号量也被称作基于内存的信号量;命名信号量通常用于不共享内存的情况下,比如进程间通信。

同时,在创建信号量时,根据信号量取值的不同,POSIX信号量还可以分为:

下面是POSIX信号量函数接口:

信号量的函数都以sem_开头,线程中使用的基本信号函数有4个,他们都声明在头文件semaphore.h中,该头文件定义了用于信号量操作的sem_t类型:

【sem_init函数】:

该函数用于创建信号量,原型如下:

该函数初始化由sem指向的信号对象,设置它的共享选项,并给它一个初始的整数值。pshared控制信号量的类型,如果其值为0,就表示信号量是当前进程的局部信号量,否则信号量就可以在多个进程间共享,value为sem的初始值。

该函数调用成功返回0,失败返回-1。

【sem_destroy函数】:

该函数用于对用完的信号量进行清理,其原型如下:

成功返回0,失败返回-1。

【sem_wait函数】:

该函数用于以原子操作的方式将信号量的值减1。原子操作就是,如果两个线程企图同时给一个信号量加1或减1,它们之间不会互相干扰。其原型如下:

sem指向的对象是sem_init调用初始化的信号量。调用成功返回0,失败返回-1。

sem_trywait()则是sem_wait()的非阻塞版本,当条件不满足时(信号量为0时),该函数直接返回EAGAIN错误而不会阻塞等待。

sem_timedwait()功能与sem_wait()类似,只是在指定的abs_timeout时间内等待,超过时间则直接返回ETIMEDOUT错误。

【sem_post函数】:

该函数用于以原子操作的方式将信号量的值加1,其原型如下:

与sem_wait一样,sem指向的对象是由sem_init调用初始化的信号量。调用成功时返回0,失败返回-1。

【sem_getvalue函数】:

该函数返回当前信号量的值,通过restrict输出参数返回。如果当前信号量已经上锁(即同步对象不可用),那么返回值为0,或为负数,其绝对值就是等待该信号量解锁的线程数。

【实例1】:

【实例2】:

之所以称为命名信号量,是因为它有一个名字、一个用户ID、一个组ID和权限。这些是提供给不共享内存的那些进程使用命名信号量的接口。命名信号量的名字是一个遵守路径名构造规则的字符串。

【sem_open函数】:

该函数用于创建或打开一个命名信号量,其原型如下:

参数name是一个标识信号量的字符串。参数oflag用来确定是创建信号量还是连接已有的信号量。

oflag的参数可以为0,O_CREAT或O_EXCL:如果为0,表示打开一个已存在的信号量;如果为O_CREAT,表示如果信号量不存在就创建一个信号量,如果存在则打开被返回,此时mode和value都需要指定;如果为O_CREAT|O_EXCL,表示如果信号量存在则返回错误。

mode参数用于创建信号量时指定信号量的权限位,和open函数一样,包括:S_IRUSR、S_IWUSR、S_IRGRP、S_IWGRP、S_IROTH、S_IWOTH。

value表示创建信号量时,信号量的初始值。

【sem_close函数】:

该函数用于关闭命名信号量:

单个程序可以用sem_close函数关闭命名信号量,但是这样做并不能将信号量从系统中删除,因为命名信号量在单个程序执行之外是具有持久性的。当进程调用_exit、exit、exec或从main返回时,进程打开的命名信号量同样会被关闭。

【sem_unlink函数】:

sem_unlink函数用于在所有进程关闭了命名信号量之后,将信号量从系统中删除:

【信号量操作函数】:

与无名信号量一样,操作信号量的函数如下:

命名信号量是随内核持续的。当命名信号量创建后,即使当前没有进程打开某个信号量,它的值依然保持,直到内核重新自举或调用sem_unlink()删除该信号量。

无名信号量的持续性要根据信号量在内存中的位置确定:

很多时候信号量、互斥量和条件变量都可以在某种应用中使用,那这三者的差异有哪些呢?下面列出了这三者之间的差异:

c语言实例,linux线程同步的信号量方式 谢谢

这么高的悬赏,实例放后面。信号量(sem),如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。

信号量初始化。

intsem_init(sem_t*sem,intpshared,unsignedintvalue);

这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。

等待信号量。给信号量减1,然后等待直到信号量的值大于0。

intsem_wait(sem_t*sem);

释放信号量。信号量值加1。并通知其他等待线程。

intsem_post(sem_t*sem);

销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。

intsem_destroy(sem_t*sem);

#include<stdlib.h>

#include<stdio.h>

#include<unistd.h>

#include<pthread.h>

#include<semaphore.h>

#include<errno.h>

#definereturn_if_fail(p)if((p)==0){printf("[%s]:funcerror!/n",__func__);return;}

typedefstruct_PrivInfo

{

sem_ts1;

sem_ts2;

time_tend_time;

}PrivInfo;

staticvoidinfo_init(PrivInfo*thiz);

staticvoidinfo_destroy(PrivInfo*thiz);

staticvoid*pthread_func_1(PrivInfo*thiz);

staticvoid*pthread_func_2(PrivInfo*thiz);

intmain(intargc,char**argv)

{

pthread_tpt_1=0;

pthread_tpt_2=0;

intret=0;

PrivInfo*thiz=NULL;

thiz=(PrivInfo*)malloc(sizeof(PrivInfo));

if(thiz==NULL)

{

printf("[%s]:Failedtomallocpriv./n");

return-1;

}

info_init(thiz);

ret=pthread_create(&pt_1,NULL,(void*)pthread_func_1,thiz);

if(ret!=0)

{

perror("pthread_1_create:");

}

ret=pthread_create(&pt_2,NULL,(void*)pthread_func_2,thiz);

if(ret!=0)

{

perror("pthread_2_create:");

}

pthread_join(pt_1,NULL);

pthread_join(pt_2,NULL);

info_destroy(thiz);

return0;

}

staticvoidinfo_init(PrivInfo*thiz)

{

return_if_fail(thiz!=NULL);

thiz->end_time=time(NULL)+10;

sem_init(&thiz->s1,0,1);

sem_init(&thiz->s2,0,0);

return;

}

staticvoidinfo_destroy(PrivInfo*thiz)

{

return_if_fail(thiz!=NULL);

sem_destroy(&thiz->s1);

sem_destroy(&thiz->s2);

free(thiz);

thiz=NULL;

return;

}

staticvoid*pthread_func_1(PrivInfo*thiz)

{

return_if_fail(thiz!=NULL);

while(time(NULL)<thiz->end_time)

{

sem_wait(&thiz->s2);

printf("pthread1:pthread1getthelock./n");

sem_post(&thiz->s1);

printf("pthread1:pthread1unlock/n");

sleep(1);

}

return;

}

staticvoid*pthread_func_2(PrivInfo*thiz)

{

return_if_fail(thiz!=NULL);

while(time(NULL)<thiz->end_time)

{

sem_wait(&thiz->s1);

printf("pthread2:pthread2gettheunlock./n");

sem_post(&thiz->s2);

printf("pthread2:pthread2unlock./n");

sleep(1);

}

return;

}

阅读剩余
THE END