linux 协议栈(协议栈开发)
大家好,感谢邀请,今天来为大家分享一下linux 协议栈的问题,以及和协议栈开发的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!
Linux网络编程之dpdk实现用户态协议栈
在本篇中,我们将深入探讨Linux网络编程中,如何利用dpdk(Data Plane Development Kit)来构建用户态的协议栈。首先,确保你已经在本地环境中搭建了dpdk环境,虽然这里并未详述搭建过程,网上能找到相关教程。
进行dpdk环境配置时,关键步骤如下:
检查网卡状态,通过ping测试验证其连通性。
确认网卡支持多队列,这是dpdk的基础,单中断模式不适用。
配置环境变量,可能通过shell脚本完成。
加载DPDK UIO模块,
加载VFIO模块,
加载KNI模块,
设置巨页以减少内存交换,例如512字节。
配置网络接口,比如eth0,需将其down并绑定到dpdk的pci地址。
在Windows环境下,需要管理员权限来配置静态IP表,包括添加新的静态表、确认适配器和MAC地址,以及清除静态表。
接下来,我们将介绍dpdk提供的API和数据结构,如struct rte_memzone、rte_mempool、rte_eth_dev_info等,它们是构建协议栈的基础。例如,rte_mempool用于内存管理,rte_eth_dev_info则包含了设备的驱动信息。
API函数如rte_eal_init用于初始化环境,rte_memzone_reserve用于预留内存,rte_mempool_create则用于创建内存池。这些函数在实现用户态协议栈时至关重要。
最后,dpdk通过一系列函数,如rte_eth_dev_start和rte_eth_rx_burst,来启动设备、设置接收队列并接收数据包,这些步骤是构建完整协议栈链路的关键步骤。实际操作中,你可以从创建mbuf内存池开始,配置设备,设置队列,然后处理收到的网络数据,包括解析以太网、IP、TCP/UDP等协议。
总结来说,dpdk为用户提供了在用户态处理网络数据的灵活性,通过自定义协议栈,可以实现从底层网络数据的捕获到高级协议解析的全过程。在调试和分析过程中,可以借助wareshark等工具进行数据包抓包和深度分析。
linux 网络路径中网络协议栈有几种
1.总述
Linux中用户空间的网络编程,是以socket为接口,一般创建一个sockfd= socket(family,type,protocol),之后以该sockfd为参数,进行各种系统调用来实现网络通信功能。其中family指明使用哪种协议域(如INET、UNIX等),protocol指明该协议域中具体哪种协议(如INET中的TCP、UDP等),type表明该接口的类型(如STREAM、DGRAM等),一般设protocol=0,那么就会用该family中该type类型的默认协议(如INET中的STREAM默认就是TCP协议)。
Linux中利用module机制,层次分明地实现了这套协议体系,并具有很好的扩展性,其基本模块构成如下:
先看右边,顶层的socket模块提供一个sock_register()函数,供各个协议域模块使用,在全局的net_family[]数组中增加一项;各个协议域模块也提供一个类似的register_xx_proto()函数,供各个具体的协议使用,在该协议域私有的xx_proto[]数组中增加一项。这两个数组中的存放的都是指针,指向的数据结构如下图所示:
很明显它们是用来创建不同类型的socket接口的,且是一种分层次的创建过程,可想而知,顶层socket_create()完成一些共有的操作,如分配内存等,然后调用下一层create;协议域内的create()完成一些该协议域内共有的初始化工作;最后具体协议中的create()完成协议特有的初始化。具体的下一节讲。
再来看上图右边的,也是顶层socket模块提供的4个函数,前两个一般由具体协议模块调用,由于协议栈与应用层的交互,具体的后面会讲到。后两个一般有协议域模块调用,用于底层设备与协议栈间的交互。但这也不绝对,如在PPPOE协议中,这4个函数都由具体协议模块调用,这是因为PPPOX协议域内的共有部分不多,各个协议间几乎独立。这4个函数的功能及所用到的数据结构,在后面具体用到时会详细说明。
2.socket插口创建
首先来看一下最终创建好的socket插口由哪些部分组成,该结构是相当庞大的,这里只给出框架:
基本属性有state(listen、accept等),flags标志(blocked等),type类型,这里family和protocol都没有了,因为它们再创建时使用过了,已经被融入到socket结构中。
File指针指向一个file结构,在Linux中一个socket也被抽象为一个文件,所以在应用层一般通过标准的文件操作来操作它。
Ops指向一个struct proto_ops结构,它是每种协议特有的,应用层的系统调用,最终映射到网络栈中具体协议的操作方法。
Sk指向一个struct sock结构,而该结构在分配空间时,多分配了一点以作为该协议的私有部分,这里包含了该协议的具体信息,内容相当多。首先是一个struct sock_common结构,包含了协议的基本信息;然后是一个sk_prot_create指针,指向一个struct proto结构体,该结构体就是第一节中所述的,用proto_regsiter()注册到内核中的,它包含应用层到协议栈的交互操作和信息(也可以说成是Appà transport layer的交互信息);然后还有一个sk_backlog_rcv函数指针,所指函数在协议栈处理完接收到的包之后调用,一般仅是把数据包放到该socket的接收队列中,等待APP读取;最后协议的私有部分里存放该协议的私有信息,如pppoe的sessionID、daddr,tcp的连接4元组等,这些信息很重要,利用它们来区分同一个协议中的多个socket。
附上出处链接:
Linux网络协议栈驱动发展的引擎linux的网络协议栈
Linux网络协议栈作为网络协议的基础性实现,是许多应用的核心组件,是网络技术的重要发展推动力。随着全球范围内越来越多的计算机网络产品与服务和手段逐渐增加,不同类型、结构和功能的Linux网络协议栈也不断出现,更好地支持和管理网络资源,为客户提供良好的网络性能。
Linux网络协议栈,是一组用来控制网络数据传输的包处理,其中包含多个子层,每层实现不同的功能。比如用户层(User)主要是实现用户的程序和资源的访问和操作;传输层(Transport)负责建立网络连接,传输数据,并进行流量控制和其他处理;网络层(Network)主要是路由分发、管理IP地址,协调网络的路径问题;数据链路层(Data Link)主要是管理网络数据传输的起点和终点,通过建立和维护链路,来保证数据传输的可靠性。例如,一段代码可以提供以下功能:
#include
int main(){
//打开 TCP/IP套接字
int sockfd= socket(AF_INET,SOCK_STREAM, 0);
//建立连接
connect(sockfd,(struct sockaddr*)&serveraddr, sizeof(serveraddr));
//发送/接收信息
send(sockfd, message, length, 0);
recv(sockfd, result, length, 0);
//关闭套接字
close(sockfd);
return 0;
}
Linux网络协议栈的灵活性、兼容性和安全性对网络设备、操作系统和软件应用的发展至关重要。目前,它被广泛应用于企业IT网络、云计算、大数据、物联网、无线通讯等多个领域。它有助于提高系统性能,简化网络安全和管理,支持互联网服务,以及提高计算机网络的可用性和可靠性。 Linux网络协议栈已经成为企业网络的首要支撑,成为推进网络协议驱动发展的引擎。