linux socket客户端 socket端口

Windows Socket和Linux Socket编程的区别

SOCKET在原理上应该是一样的,只是不同系统的运行机置有些不同。

Socket编程 windows到Linux代码移植遇到的问题

1、一些常用函数的移植

2、网络

socket相关程序从windows移植到linux下需要注意的

1)头文件

windows下winsock.h/winsock2.h

linux下sys/socket.h

错误处理:errno.h

其他常用函数的头文件可到命令行下用man指令查询。

2)初始化

windows下需要用WSAStartup

linux下不需要(很方便),直接可以使用

3)关闭socket

windows下closesocket(...)

linux下close(...)

4)类型

windows下SOCKET

在linux下为int类型

5)绑定地址的结构体

名称相同,都是struct sockaddr、struct sockaddr_in,这两者通常转换使用;

在Windows下面名称都是大写,而在Linux下为小写

常用:

Linux下:

sockaddr_in destAddr;

destAdd.sin_family=AF_INET;

destAddr.sin_port=htons(2030);

destAddr.sin_addr.s_addr=inet_addr("192.168.1.1");

Windows下:

SOCKADDR_IN destAddr;

destAddr.sin_addr.S_un.S_addr=inet_addr("192.168.1.1");

但结构体中成员的名称不同

Windows中结构体成员

struct sockaddr_in{

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

struct sockaddr{

u_short sa_family;

char sa_data[14];

};

struct in_addr{

union{

struct{ u_char s_b1,s_b2,s_b3,s_b4;} S_un_b;

struct{ u_short s_w1,s_w2;} S_un_w;

u_long S_addr;

} S_un;

};

下面的一些宏可以使windows下的程序移植到linux下(通过类型的重新定义,使代码具有linux和windows下的移植性)

[cpp] view plaincopy

#ifdef WIN32

typedef int socklen_t;

typedef int ssize_t;

#endif

#ifdef __LINUX__

typedef int SOCKET;

typedef unsigned char BYTE;

typedef unsigned long DWORD;

#define FALSE 0

#define SOCKET_ERROR(-1)

#endif

[cpp] view plaincopy

#ifdef WIN32

typedef int socklen_t;

typedef int ssize_t;

#endif

#ifdef __LINUX__

typedef int SOCKET;

typedef unsigned char BYTE;

typedef unsigned long DWORD;

#define FALSE 0

#define SOCKET_ERROR(-1)

#endif

6)获取错误码

windows下getlasterror()/WSAGetLastError()

linux下errno变量

7)设置非阻塞

windows下ioctlsocket()

linux下fcntl()<fcntl.h>

8)send函数最后一个参数

windows下一般设置为0

linux下最好设置为MSG_NOSIGNAL,如果不设置,在发送出错后有可能会导致程序退出。

9)毫秒级时间获取

windows下GetTickCount()

linux下gettimeofday()

10)数据类型的一些转化

通用的:

小端到大端(网络协议使用)的转换:htonl, htons

点分十进制IP和整数之间的相互转换:inet_addr()(该函数将点分十进制转为整数),inet_aton(),inet_ntoa(),inet_pton()(linux下独有该函数可以实现相互之间的转换)

使用到的头文件不相同,linux下用man命令查询。

另外注意:

linux下使用的套接字为伯克利套接字,因此在select()函数的使用上(第一个参数的设置)也有区别;

windows下为了与伯克利套接字匹配,第一个参数是无所谓,一般可设为0;

int maxfdp是一个整数值,是指集合中所有文件描述符的范围,即所有文件描述符的最大值加1,不能错!

3、多线程

多线程:(win)process.h--〉(linux)pthread.h

_beginthread--> pthread_create

_endthread--> pthread_exit

linux.sock文件解析linux.sock

Linux的协议栈是什么呢?

Linux网络协议栈基于分层的设计思想,总共分为四层,从下往上依次是:物理层,链路层,网络层,应用层。Linux网络协议栈其实是源于BSD的协议栈,它向上以及向下的接口以及协议栈本身的软件分层组织的非常好。Linux的协议栈基于分层的设计思想,总共分为四层,从下往上依次是:物理层,链路层,网络层,应用层。物理层主要提供各种连接的物理设备,如各种网卡,串口卡等;链路层主要指的是提供对物理层进行访问的各种接口卡的驱动程序,如网卡驱动等;网路层的作用是负责将网络数据包传输到正确的位置,最重要的网络层协议当然就是IP协议了,其实网络层还有其他的协议如ICMP,ARP,RARP等,只不过不像IP那样被多数人所熟悉;传输层的作用主要是提供端到端,说白一点就是提供应用程序之间的通信,传输层最着名的协议非TCP与UDP协议末属了;应用层,顾名思义,当然就是由应用程序提供的,用来对传输数据进行语义解释的“人机界面”层了,比如HTTP,SMTP,FTP等等,其实应用层还不是人们最终所看到的那一层,最上面的一层应该是“解释层”,负责将数据以各种不同的表项形式最终呈献到人们眼前。Linux网络核心架构Linux的网络架构从上往下可以分为三层,分别是:用户空间的应用层。内核空间的网络协议栈层。物理硬件层。其中最重要最核心的当然是内核空间的协议栈层了。Linux网络协议栈结构Linux的整个网络协议栈都构建与LinuxKernel中,整个栈也是严格按照分层的思想来设计的,整个栈共分为五层,分别是:

1,系统调用接口层,实质是一个面向用户空间应用程序的接口调用库,向用户空间应用程序提供使用网络服务的接口。

2,协议无关的接口层,就是SOCKET层,这一层的目的是屏蔽底层的不同协议(更准确的来说主要是TCP与UDP,当然还包括RAWIP,SCTP等),以便与系统调用层之间的接口可以简单,统一。简单的说,不管我们应用层使用什么协议,都要通过系统调用接口来建立一个SOCKET,这个SOCKET其实是一个巨大的sock结构,它和下面一层的网络协议层联系起来,屏蔽了不同的网络协议的不同,只吧数据部分呈献给应用层(通过系统调用接口来呈献)。

3,网络协议实现层,毫无疑问,这是整个协议栈的核心。这一层主要实现各种网络协议,最主要的当然是IP,ICMP,ARP,RARP,TCP,UDP等。这一层包含了很多设计的技巧与算法,相当的不错。

4,与具体设备无关的驱动接口层,这一层的目的主要是为了统一不同的接口卡的驱动程序与网络协议层的接口,它将各种不同的驱动程序的功能统一抽象为几个特殊的动作,如open,close,init等,这一层可以屏蔽底层不同的驱动程序。

5,驱动程序层,这一层的目的就很简单了,就是建立与硬件的接口层。可以看到,Linux网络协议栈是一个严格分层的结构,其中的每一层都执行相对独立的功能,结构非常清晰。其中的两个“无关”层的设计非常棒,通过这两个“无关”层,其协议栈可以非常轻松的进行扩展。在我们自己的软件设计中,可以吸收这种设计方法。

linux系统mysql数据库怎么修改数据库存放路径?

mnt目录下建立mysql_data目录#cd/mnt#mkdirmysql_data把MySQL服务服务停掉。#servicemysqlstop把/var/lib/mysql整个目录移到/mnt/mysql_data。#mv/usr/local/mysql/data/mnt/mysql_data重新设置数据权限。#cd/mnt/mysql_data修改my.cnf配置文件#vi/etc/my.cnf指明mysql.sock文件的产生位置。用符号#注释掉原来socket,修改MySQL启动脚本。#vi/etc/init.d/mysql找到datadir。datadir=/mnt/mysql_data7重启mysql服务#servicemysqlstart好了,至此数据库目录位置已迁移完毕。

clash代理模式规则?

Clash是一个用Go语言开发,基于规则的多平台代理客户端,兼容Shadowsocks、VMess、Trojan和Snell等协议,而且拥有像Surge一样强大的自定义代理规则。

Clash具有自动测速、自动判断是否需要加速、自动选择高速节点的功能。目前,Clash占用内存和系统资源非常低,已经衍生出支持Windows、Mac、Linux、Android以及网关路由器等设备平台的GUI客户端,但是并没有iOS系统的移植版本。

请问linux怎么增大socket连接上限

1、修改用户进程可打开文件数限制

在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,

最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统

为每个TCP连接都要创建一个socket句柄,每个socket句柄同时也是一个文件句柄)。

可使用ulimit命令查看系统允许当前用户进程打开的文件数限制:

[speng@as4~]$ ulimit-n

1024

这表示当前用户的每个进程最多允许同时打开1024个文件,这1024个文件中还得除去

每个进程必然打开的标准输入,标准输出,标准错误,服务器监听 socket,

进程间通讯的unix域socket等文件,那么剩下的可用于客户端socket连接的文件数就

只有大概1024-10=1014个左右。也就是说缺省情况下,基于Linux的通讯程序最多允许

同时1014个TCP并发连接。

对于想支持更高数量的TCP并发连接的通讯处理程序,就必须修改Linux对当前用户的

进程同时打开的文件数量的软限制(soft limit)和硬限制(hardlimit)。其中软限制

是指Linux在当前系统能够承受的范围内进一步限制用户同时打开的文件数;硬限制

则是根据系统硬件资源状况(主要是系统内存)计算出来的系统最多可同时打开的文件数量。

通常软限制小于或等于硬限制。

修改上述限制的最简单的办法就是使用ulimit命令:

[speng@as4~]$ ulimit-n

上述命令中,在中指定要设置的单一进程允许打开的最大文件数。如果系统回显

类似于“Operation notpermitted”之类的话,说明上述限制修改失败,实际上是

因为在中指定的数值超过了Linux系统对该用户打开文件数的软限制或硬限制。

因此,就需要修改Linux系统对用户的关于打开文件数的软限制和硬限制。

第一步,修改/etc/security/limits.conf文件,在文件中添加如下行:

speng soft nofile 10240

speng hard nofile 10240

其中speng指定了要修改哪个用户的打开文件数限制,可用’*'号表示修改所有用户的限制;

soft或hard指定要修改软限制还是硬限制;10240则指定了想要修改的新的限制值,

即最大打开文件数(请注意软限制值要小于或等于硬限制)。修改完后保存文件。

第二步,修改/etc/pam.d/login文件,在文件中添加如下行:

session required/lib/security/pam_limits.so

这是告诉Linux在用户完成系统登录后,应该调用pam_limits.so模块来设置系统对

该用户可使用的各种资源数量的最大限制(包括用户可打开的最大文件数限制),

而pam_limits.so模块就会从/etc/security/limits.conf文件中读取配置来设置这些限制值。

修改完后保存此文件。

第三步,查看Linux系统级的最大打开文件数限制,使用如下命令:

[speng@as4~]$ cat/proc/sys/fs/file-max

12158

这表明这台Linux系统最多允许同时打开(即包含所有用户打开文件数总和)12158个文件,

是Linux系统级硬限制,所有用户级的打开文件数限制都不应超过这个数值。通常这个系统级

硬限制是Linux系统在启动时根据系统硬件资源状况计算出来的最佳的最大同时打开文件数限制,

如果没有特殊需要,不应该修改此限制,除非想为用户级打开文件数限制设置超过此限制的值。

修改此硬限制的方法是修改/etc/rc.local脚本,在脚本中添加如下行:

echo 22158>/proc/sys/fs/file-max

这是让Linux在启动完成后强行将系统级打开文件数硬限制设置为22158。修改完后保存此文件。

完成上述步骤后重启系统,一般情况下就可以将Linux系统对指定用户的单一进程允许同时

打开的最大文件数限制设为指定的数值。如果重启后用 ulimit-n命令查看用户可打开文件数限制

仍然低于上述步骤中设置的最大值,这可能是因为在用户登录脚本/etc/profile中使用ulimit-n命令

已经将用户可同时打开的文件数做了限制。由于通过ulimit-n修改系统对用户可同时打开文件的

最大数限制时,新修改的值只能小于或等于上次 ulimit-n设置的值,因此想用此命令增大这个

限制值是不可能的。

所以,如果有上述问题存在,就只能去打开/etc/profile脚本文件,

在文件中查找是否使用了ulimit-n限制了用户可同时打开的最大文件数量,如果找到,

则删除这行命令,或者将其设置的值改为合适的值,然后保存文件,用户退出并重新登录系统即可。

通过上述步骤,就为支持高并发TCP连接处理的通讯处理程序解除关于打开文件数量方面的系统限制。

2、修改网络内核对TCP连接的有关限制

在Linux上编写支持高并发TCP连接的客户端通讯处理程序时,有时会发现尽管已经解除了系统

对用户同时打开文件数的限制,但仍会出现并发TCP连接数增加到一定数量时,再也无法成功

建立新的TCP连接的现象。出现这种现在的原因有多种。

第一种原因可能是因为Linux网络内核对本地端口号范围有限制。此时,进一步分析为什么无法

建立TCP连接,会发现问题出在connect()调用返回失败,查看系统错误提示消息是“Can’t assign requestedaddress”。同时,如果在此时用tcpdump工具监视网络,会发现根本没有TCP连接时客户端

发SYN包的网络流量。这些情况说明问题在于本地Linux系统内核中有限制。

其实,问题的根本原因

在于Linux内核的TCP/IP协议实现模块对系统中所有的客户端TCP连接对应的本地端口号的范围

进行了限制(例如,内核限制本地端口号的范围为1024~32768之间)。当系统中某一时刻同时

存在太多的TCP客户端连接时,由于每个TCP客户端连接都要占用一个唯一的本地端口号

(此端口号在系统的本地端口号范围限制中),如果现有的TCP客户端连接已将所有的本地端口号占满,

则此时就无法为新的TCP客户端连接分配一个本地端口号了,因此系统会在这种情况下在connect()

调用中返回失败,并将错误提示消息设为“Can’t assignrequested address”。

有关这些控制

逻辑可以查看Linux内核源代码,以linux2.6内核为例,可以查看tcp_ipv4.c文件中如下函数:

static int tcp_v4_hash_connect(struct sock*sk)

请注意上述函数中对变量sysctl_local_port_range的访问控制。变量sysctl_local_port_range

的初始化则是在tcp.c文件中的如下函数中设置:

void __init tcp_init(void)

内核编译时默认设置的本地端口号范围可能太小,因此需要修改此本地端口范围限制。

第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:

net.ipv4.ip_local_port_range= 1024 65000

这表明将系统对本地端口范围限制设置为1024~65000之间。请注意,本地端口范围的最小值

必须大于或等于1024;而端口范围的最大值则应小于或等于65535。修改完后保存此文件。

第二步,执行sysctl命令:

[speng@as4~]$ sysctl-p

如果系统没有错误提示,就表明新的本地端口范围设置成功。如果按上述端口范围进行设置,

则理论上单独一个进程最多可以同时建立60000多个TCP客户端连接。

第二种无法建立TCP连接的原因可能是因为Linux网络内核的IP_TABLE防火墙对最大跟踪的TCP

连接数有限制。此时程序会表现为在 connect()调用中阻塞,如同死机,如果用tcpdump工具监视网络,

也会发现根本没有TCP连接时客户端发SYN包的网络流量。由于 IP_TABLE防火墙在内核中会对

每个TCP连接的状态进行跟踪,跟踪信息将会放在位于内核内存中的conntrackdatabase中,

这个数据库的大小有限,当系统中存在过多的TCP连接时,数据库容量不足,IP_TABLE无法为

新的TCP连接建立跟踪信息,于是表现为在connect()调用中阻塞。此时就必须修改内核对最大跟踪

的TCP连接数的限制,方法同修改内核对本地端口号范围的限制是类似的:

第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:

net.ipv4.ip_conntrack_max= 10240

这表明将系统对最大跟踪的TCP连接数限制设置为10240。请注意,此限制值要尽量小,

以节省对内核内存的占用。

第二步,执行sysctl命令:

[speng@as4~]$ sysctl-p

如果系统没有错误提示,就表明系统对新的最大跟踪的TCP连接数限制修改成功。

如果按上述参数进行设置,则理论上单独一个进程最多可以同时建立10000多个TCP客户端连接。

3、使用支持高并发网络I/O的编程技术

在Linux上编写高并发TCP连接应用程序时,必须使用合适的网络I/O技术和I/O事件分派机制。

可用的I/O技术有同步I/O,非阻塞式同步I/O(也称反应式I/O),以及异步I/O。在高TCP并发的情形下,

如果使用同步I/O,这会严重阻塞程序的运转,除非为每个TCP连接的I/O创建一个线程。

但是,过多的线程又会因系统对线程的调度造成巨大开销。因此,在高TCP并发的情形下使用

同步 I/O是不可取的,这时可以考虑使用非阻塞式同步I/O或异步I/O。非阻塞式同步I/O的技术包括使用select(),poll(),epoll等机制。异步I/O的技术就是使用AIO。

从I/O事件分派机制来看,使用select()是不合适的,因为它所支持的并发连接数有限(通常在1024个以内)。

如果考虑性能,poll()也是不合适的,尽管它可以支持的较高的TCP并发数,但是由于其采用

“轮询”机制,当并发数较高时,其运行效率相当低,并可能存在I/O事件分派不均,导致部分TCP

连接上的I/O出现“饥饿”现象。而如果使用epoll或AIO,则没有上述问题(早期Linux内核的AIO技术

实现是通过在内核中为每个 I/O请求创建一个线程来实现的,这种实现机制在高并发TCP连接的情形下

使用其实也有严重的性能问题。但在最新的Linux内核中,AIO的实现已经得到改进)。

综上所述,在开发支持高并发TCP连接的Linux应用程序时,应尽量使用epoll或AIO技术来实现并发的

TCP连接上的I/O控制,这将为提升程序对高并发TCP连接的支持提供有效的I/O保证。

内核参数sysctl.conf的优化

/etc/sysctl.conf是用来控制linux网络的配置文件,对于依赖网络的程序(如web服务器和cache服务器)

非常重要,RHEL默认提供的最好调整。

推荐配置(把原/etc/sysctl.conf内容清掉,把下面内容复制进去):

net.ipv4.ip_local_port_range= 1024 65536

net.core.rmem_max=16777216

net.core.wmem_max=16777216

net.ipv4.tcp_rmem=4096 87380 16777216

net.ipv4.tcp_wmem=4096 65536 16777216

net.ipv4.tcp_fin_timeout= 10

net.ipv4.tcp_tw_recycle= 1

net.ipv4.tcp_timestamps= 0

net.ipv4.tcp_window_scaling= 0

net.ipv4.tcp_sack= 0

net.core.netdev_max_backlog= 30000

net.ipv4.tcp_no_metrics_save=1

net.core.somaxconn= 262144

net.ipv4.tcp_syncookies= 0

net.ipv4.tcp_max_orphans= 262144

net.ipv4.tcp_max_syn_backlog= 262144

net.ipv4.tcp_synack_retries= 2

net.ipv4.tcp_syn_retries= 2

这个配置参考于cache服务器varnish的推荐配置和SunOne服务器系统优化的推荐配置。

varnish调优推荐配置的地址为:

不过varnish推荐的配置是有问题的,实际运行表明“net.ipv4.tcp_fin_timeout= 3”的配置

会导致页面经常打不开;并且当网友使用的是IE6浏览器时,访问网站一段时间后,所有网页都会

打不开,重启浏览器后正常。可能是国外的网速快吧,我们国情决定需要

调整“net.ipv4.tcp_fin_timeout= 10”,在10s的情况下,一切正常(实际运行结论)。

修改完毕后,执行:

/sbin/sysctl-p/etc/sysctl.conf

/sbin/sysctl-w net.ipv4.route.flush=1

命令生效。为了保险起见,也可以reboot系统。

调整文件数:

linux系统优化完网络必须调高系统允许打开的文件数才能支持大的并发,默认1024是远远不够的。

执行命令:

Shell代码

echo ulimit-HSn 65536>>/etc/rc.local

echo ulimit-HSn 65536>>/root/.bash_profile

ulimit-HSn 65536

阅读剩余
THE END