linux core 调试,core dumped 解决方案

老铁们,大家好,相信还有很多朋友对于linux core 调试和core dumped 解决方案的相关问题不太懂,没关系,今天就由我来为大家分享分享linux core 调试以及core dumped 解决方案的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!

core文件如何查看和调试

在Unix系统下,应用程序崩溃,一般会产生core文件,如何根据core文件查找问题的所在,并做相应的分析和调试,是非常重要的,本文对此做简单介绍。

例如,一个程序cmm_test_tool在运行的时候发生了错误,并生成了一个core文件,如下:

-rw-r–r– 1 root cmm_test_tool.c

-rw-r–r– 1 root

cmm_test_tool.o

-rwxr-xr-x 1 root cmm_test_tool

-rw--- 1 root

core.19344

-rw--- 1 root core.19351

-rw-r–r– 1 root

cmm_test_tool.cfg

-rw-r–r– 1 root cmm_test_tool.res

-rw-r–r– 1 root

cmm_test_tool.log

[root@AUTOTEST_SIM2 mam2cm]#

就可以利用命令gdb进行查找,参数一是应用程序的名称,参数二是core文件,运行

gdb

cmm_test_tool core.19344结果如下:

[root@AUTOTEST_SIM2 mam2cm]# gdb cmm_test_tool core.19344

GNU gdb Red Hat

Linux(5.2.1-4)

Copyright 2002 Free Software Foundation, Inc.

GDB is free

software, covered by the GNU General Public License, and you are

welcome to

change it and/or distribute copies of it under certain conditions.

Type“show

copying” to see the conditions.

There is absolutely no warranty for GDB. Type

“show warranty” for details.

This GDB was configured as

“i386-redhat-linux”…

Core was generated by `./cmm_test_tool’.

Program

terminated with signal 11, Segmentation fault.

Reading symbols from

/lib/i686/libpthread.so.0…done.

Loaded symbols for

/lib/i686/libpthread.so.0

Reading symbols from

/lib/i686/libm.so.6…done.

Loaded symbols for/lib/i686/libm.so.6

Reading

symbols from/usr/lib/libz.so.1…done.

Loaded symbols for

/usr/lib/libz.so.1

Reading symbols from

/usr/lib/libstdc++.so.5…done.

Loaded symbols for

/usr/lib/libstdc++.so.5

Reading symbols from

/lib/i686/libc.so.6…done.

Loaded symbols for/lib/i686/libc.so.6

Reading

symbols from/lib/libgcc_s.so.1…done.

Loaded symbols for

/lib/libgcc_s.so.1

Reading symbols from/lib/ld-linux.so.2…done.

Loaded

symbols for/lib/ld-linux.so.2

Reading symbols from

/lib/libnss_files.so.2…done.

Loaded symbols for/lib/libnss_files.so.2

#0

0×4202cec1 in __strtoul_internal() from

/lib/i686/libc.so.6

(gdb)

进入gdb提示符,输入where,找到错误发生的位置和堆栈,如下:

(gdb) where

#0 0×4202cec1 in __strtoul_internal() from

/lib/i686/libc.so.6

#1 0×4202d4e7 in strtoul() from

/lib/i686/libc.so.6

#2 0×0804b4da in GetMaxIDFromDB(get_type=2,

max_id=0×806fd20) at cmm_test_tool.c:788

#3 0×0804b9d7 in ConstrctVODProgram

(vod_program=0×40345bdc) at cmm_test_tool.c:946

#4 0×0804a2f4 in

TVRequestThread(arg=0×0) at cmm_test_tool.c:372

#5 0×40021941 in

pthread_start_thread() from/lib/i686/libpthread.so.0

(gdb)

至此,可以看出文件出错的位置是函数 GetMaxIDFromDB

,两个参数分别是2和0×806fd20,这个函数位于源代码的788行,基于此,我们就可以有针对性的找到问题的根源,并加以解决。

linux c内存溢出的core dump bug怎么跟

浅析Linux下core文件

当我们的程序崩溃时,内核有可能把该程序当前内存映射到core文件里,方便程序员找到程序出现问题的地方。最常出现的,几乎所有C程序员都出现过的错误就是“段错误”了。也是最难查出问题原因的一个错误。下面我们就针对“段错误”来分析core文件的产生、以及我们如何利用core文件找到出现崩溃的地方。

何谓core文件

当一个程序崩溃时,在进程当前工作目录的core文件中复制了该进程的存储图像。core文件仅仅是一个内存映象(同时加上调试信息),主要是用来调试的。

当程序接收到以下UNIX信号会产生core文件:

名字

说明

ANSI C POSIX.1

SVR4 4.3+BSD

缺省动作

SIGABRT

异常终止(abort)

..

..

终止w/core

SIGBUS

硬件故障

.

..

终止w/core

SIGEMT

硬件故障

..

终止w/core

SIGFPE

算术异常

..

..

终止w/core

SIGILL

非法硬件指令

..

..

终止w/core

SIGIOT

硬件故障

..

终止w/core

SIGQUIT

终端退出符

.

..

终止w/core

SIGSEGV

无效存储访问

..

..

终止w/core

SIGSYS

无效系统调用

..

终止w/core

SIGTRAP

硬件故障

..

终止w/core

SIGXCPU

超过CPU限制(setrlimit)

..

终止w/core

SIGXFSZ

超过文件长度限制(setrlimit)

..

终止w/core

在系统默认动作列,“终止w/core”表示在进程当前工作目录的core文件中复制了该进程的存储图像(该文件名为core,由此可以看出这种功能很久之前就是UNIX功能的一部分)。大多数UNIX调试程序都使用core文件以检查进程在终止时的状态。

core文件的产生不是POSIX.1所属部分,而是很多UNIX版本的实现特征。UNIX第6版没有检查条件(a)和(b),并且其源代码中包含如下说明:“如果你正在找寻保护信号,那么当设置-用户-ID命令执行时,将可能产生大量的这种信号”。4.3+ BSD产生名为core.prog的文件,其中prog是被执行的程序名的前1 6个字符。它对core文件给予了某种标识,所以是一种改进特征。

表中“硬件故障”对应于实现定义的硬件故障。这些名字中有很多取自UNIX早先在DP-11上的实现。请查看你所使用的系统的手册,以确切地确定这些信号对应于哪些错误类型。

下面比较详细地说明这些信号。

• SIGABRT调用abort函数时产生此信号。进程异常终止。

• SIGBUS指示一个实现定义的硬件故障。

• SIGEMT指示一个实现定义的硬件故障。

EMT这一名字来自PDP-11的emulator trap指令。

• SIGFPE此信号表示一个算术运算异常,例如除以0,浮点溢出等。

• SIGILL此信号指示进程已执行一条非法硬件指令。

4.3BSD由abort函数产生此信号。SIGABRT现在被用于此。

• SIGIOT这指示一个实现定义的硬件故障。

IOT这个名字来自于PDP-11对于输入/输出TRAP(input/output TRAP)指令的缩写。系统V的早期版本,由abort函数产生此信号。SIGABRT现在被用于此。

• SIGQUIT当用户在终端上按退出键(一般采用Ctrl-\)时,产生此信号,并送至前台进

程组中的所有进程。此信号不仅终止前台进程组(如SIGINT所做的那样),同时产生一个core文件。

• SIGSEGV指示进程进行了一次无效的存储访问。

名字SEGV表示“段违例(segmentation violation)”。

• SIGSYS指示一个无效的系统调用。由于某种未知原因,进程执行了一条系统调用指令,

但其指示系统调用类型的参数却是无效的。

• SIGTRAP指示一个实现定义的硬件故障。

此信号名来自于PDP-11的TRAP指令。

• SIGXCPU SVR4和4.3+BSD支持资源限制的概念。如果进程超过了其软C P U时间限制,则产生此信号。

• SIGXFSZ如果进程超过了其软文件长度限制,则SVR4和4.3+BSD产生此信号。

摘自《UNIX环境高级编程》第10章信号。

使用core文件调试程序

看下面的例子:

/*core_dump_test.c*/

#include

const char*str="test";

void core_test(){

str[1]='T';

}

int main(){

core_test();

return 0;

}

编译:

gcc–g core_dump_test.c-o core_dump_test

如果需要调试程序的话,使用gcc编译时加上-g选项,这样调试core文件的时候比较容易找到错误的地方。

执行:

./core_dump_test

段错误

运行core_dump_test程序出现了“段错误”,但没有产生core文件。这是因为系统默认core文件的大小为0,所以没有创建。可以用ulimit命令查看和修改core文件的大小。

ulimit-c 0

ulimit-c 1000

ulimit-c 1000

-c指定修改core文件的大小,1000指定了core文件大小。也可以对core文件的大小不做限制,如:

ulimit-c unlimited

ulimit-c unlimited

如果想让修改永久生效,则需要修改配置文件,如.bash_profile、/etc/profile或/etc/security/limits.conf。

再次执行:

./core_dump_test

段错误(core dumped)

ls core.*

core.6133

可以看到已经创建了一个core.6133的文件.6133是core_dump_test程序运行的进程ID。

调式core文件

core文件是个二进制文件,需要用相应的工具来分析程序崩溃时的内存映像。

file core.6133

core.6133: ELF 32-bit LSB core file Intel 80386, version 1(SYSV), SVR4-style, from'core_dump_test'

在Linux下可以用GDB来调试core文件。

gdb core_dump_test core.6133

GNU gdb Red Hat Linux(5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type"show copying" to see the conditions.

There is absolutely no warranty for GDB. Type"show warranty" for details.

This GDB was configured as"i386-redhat-linux-gnu"...

Core was generated by `./core_dump_test'.

Program terminated with signal 11, Segmentation fault.

Reading symbols from/lib/tls/libc.so.6...done.

Loaded symbols for/lib/tls/libc.so.6

Reading symbols from/lib/ld-linux.so.2...done.

Loaded symbols for/lib/ld-linux.so.2

#0 0x080482fd in core_test() at core_dump_test.c:7

7 str[1]='T';

(gdb) where

#0 0x080482fd in core_test() at core_dump_test.c:7

#1 0x08048317 in main() at core_dump_test.c:12

#2 0x42015574 in __libc_start_main() from/lib/tls/libc.so.6

GDB中键入where,就会看到程序崩溃时堆栈信息(当前函数之前的所有已调用函数的列表(包括当前函数),gdb只显示最近几个),我们很容易找到我们的程序在最后崩溃的时候调用了core_dump_test.c第7行的代码,导致程序崩溃。注意:在编译程序的时候要加入选项-g。您也可以试试其他命令,如fram、list等。更详细的用法,请查阅GDB文档。

core文件创建在什么位置

在进程当前工作目录的下创建。通常与程序在相同的路径下。但如果程序中调用了chdir函数,则有可能改变了当前工作目录。这时core文件创建在chdir指定的路径下。有好多程序崩溃了,我们却找不到core文件放在什么位置。和chdir函数就有关系。当然程序崩溃了不一定都产生core文件。

什么时候不产生core文件

在下列条件下不产生core文件:

( a)进程是设置-用户-ID,而且当前用户并非程序文件的所有者;

( b)进程是设置-组-ID,而且当前用户并非该程序文件的组所有者;

( c)用户没有写当前工作目录的许可权;

( d)文件太大。core文件的许可权(假定该文件在此之前并不存在)通常是用户读/写,组读和其他读。

利用GDB调试core文件,当遇到程序崩溃时我们不再束手无策。

linux 下如何打开core dump文件开关

dump文件可以在程序crash时,方便我们查看程序crash的地方和上下文信息。在window下,要能生成dump文件,需要自己编写相应的代码。不过现在网上可以找到相应的代码,只要把它下载后然后加到自己的工程中去,就可以了!在linux下面就简单的许多。只要打开相应的开关,linux会自动在程序crash时生成相应的core文件。这个文件和window下的dump文件类似。下面是简单的一些步骤:
1.查看当前是否已经打开了此开关通过命令:ulimit-c如果输出为 0,则代表没有打开。如果为unlimited则已经打开了,就没必要在做打开。
2.通过命令打开
ulimit-c unlimited.然后通过步骤1,可以监测是否打开成功。
3.如果你要取消,很简单:ulimit-c 0就可以了通过上面的命令修改后,一般都只是对当前会话起作用,当你下次重新登录后,还是要重新输入上面的命令,所以很麻烦。我们可以把通过修改/etc/profile文件来使系统每次自动打开。步骤如下:
1.首先打开/etc/profile文件一般都可以在文件中找到这句语句:ulimit-S-c 0/dev/null
2&1.ok,根据上面的例子,我们只要把那个0改为
unlimited就ok了。然后保存退出。
2.通过source/etc/profile使当期设置生效。
3.通过ulimit-c查看下是否已经打开。其实不光这个命令可以加入到/etc/profile文件中,一些其他我们需要每次登录都生效的都可以加入到此文件中,因为登录时linux都会加载此文件。比如一些环境变量的设置。还有一种方法可以通过修改/etc/security/limits.conf文件来设置,这个方法没有试过,也是网上看到。不过上面两种就可以了!最后说一下生成core
dump文件的位置,默认位置与可执行程序在同一目录下,文件名是core.***,其中***是一个数字。core
dump文件名的模式保存在/proc/sys/kernel/core_pattern中,缺省值是core。通过以下命令可以更改core
dump文件的位置(如希望生成到/tmp/cores目录下)
echo“/tmp/cores/core”/proc/sys/kernel/core_pattern设置完以后我们可以做个测试,写个程序,产生一个异常。然后看到当前目录会有个core*的文件。然后我们可以
gdb core。*程序进行调试。

阅读剩余
THE END