centos 6 文档(centos7)

大家好,今天来为大家解答centos 6 文档这个问题的一些问题点,包括centos7也一样很多人还不知道,因此呢,今天就来为大家分析分析,现在让我们一起来看看吧!如果解决了您的问题,还望您关注下本站哦,谢谢~

CentOS6.x上部署Docker容器环境的全流程攻略

Docker.io是轻量级的容器引擎+映像仓库,在LXC(linux轻量级容器)的基础上构建,可以运行任何应用程序。

docker.io的核心层由以下几个部分组成:

1、可执行程序,/usr/bin/docker

2、docker.io网站上有一系列创建好的操作系统和应用程序映像

3、AUFS(另一个统一文件系统)来实现文件系统的快照,文件变化,控制只读或读写的需求。

4、LXC(Linux轻量级容器)

5、Cgroups(各种资源和命名空间的管理)

在本文写作的时候,最新版本是0.5.3,但目前开发很活跃,一些功能和特性可能在新版本中会发生变化。

需要注意的是CentOS 6.5与7.0的安装是有一点点不同的,CentOS-6上docker的安装包叫docker-io,并且来源于Fedora epel库,这个仓库维护了大量的没有包含在发行版中的软件,所以先要安装EPEL,而CentOS-7的docker直接包含在官方镜像源的Extras仓库(CentOS-Base.repo下的[extras]节enable=1启用)。前提是都需要联网,具体安装过程如下。

1.禁用selinux

[/code]

# getenforce

enforcing

# setenforce 0

permissive

# vi/etc/selinux/config

SELINUX=disabled

...

[/code]

2.安装 Fedora EPEL

epel-release-6-8.noarch.rpm包在发行版的介质里面已经自带了,可以从rpm安装。

复制代码

代码如下:

# yum install epel-release-6-8.noarch.rpm

//或

yum-y install

如果出现GPG key retrieval failed: [Errno 14] Could not open/read 问题,请在线安装epel,下载RPM-GPG-KEY-EPEL-6文件。

这一步执行之后,会在/etc/yum.repos.d/下生成epel.repo、epel-testing.repo两个文件,用于从Fedora官网下载rpm包。

3.检查内核版本

复制代码

代码如下:

# uname-r

2.6.32-431.el6.x86_64

# cat/etc/redhat-release

CentOS release 6.5(Final)

看到这个最低的内核版本,事实运行起来是没太大问题的,你也可以升级到3.10.x版本。

另外你也可以运行脚本check-config.sh,来检查内核模块符不符合(下面有些missing的,我的docker还是可以正常启动):

复制代码

代码如下:

[root@sean~]#./check-config

warning:/proc/config.gz does not exist, searching other paths for kernel config...

info: reading kernel config from/boot/config-2.6.32-431.el6.x86_64...

Generally Necessary:

- cgroup hierarchy: properly mounted [/cgroup]

- CONFIG_NAMESPACES: enabled

- CONFIG_NET_NS: enabled

- CONFIG_PID_NS: enabled

- CONFIG_IPC_NS: enabled

- CONFIG_UTS_NS: enabled

- CONFIG_DEVPTS_MULTIPLE_INSTANCES: enabled

- CONFIG_CGROUPS: enabled

- CONFIG_CGROUP_CPUACCT: enabled

- CONFIG_CGROUP_DEVICE: enabled

- CONFIG_CGROUP_FREEZER: enabled

- CONFIG_CGROUP_SCHED: enabled

- CONFIG_MACVLAN: enabled

- CONFIG_VETH: enabled

- CONFIG_BRIDGE: enabled

- CONFIG_NF_NAT_IPV4: missing

- CONFIG_IP_NF_TARGET_MASQUERADE: enabled

- CONFIG_NETFILTER_XT_MATCH_ADDRTYPE: missing

- CONFIG_NETFILTER_XT_MATCH_CONNTRACK: enabled

- CONFIG_NF_NAT: enabled

- CONFIG_NF_NAT_NEEDED: enabled

Optional Features:

- CONFIG_MEMCG_SWAP: missing

- CONFIG_RESOURCE_COUNTERS: enabled

- CONFIG_CGROUP_PERF: enabled

- Storage Drivers:

-"aufs":

- CONFIG_AUFS_FS: missing

- CONFIG_EXT4_FS_POSIX_ACL: enabled

- CONFIG_EXT4_FS_SECURITY: enabled

-"btrfs":

- CONFIG_BTRFS_FS: enabled

-"devicemapper":

- CONFIG_BLK_DEV_DM: enabled

- CONFIG_DM_THIN_PROVISIONING: enabled

- CONFIG_EXT4_FS: enabled

- CONFIG_EXT4_FS_POSIX_ACL: enabled

- CONFIG_EXT4_FS_SECURITY: enabled

假如你是自己编译内核,请特别留意几个绝对不能缺少的:DM_THIN_PROVISIONING、IP_NF_TARGET_MASQUERADE、NF_NAT。(AUFS_FS没有对应选项,还不清楚怎么回事,但不是必须)

4.安装 docker-io

复制代码

代码如下:

# yum install docker-io

Dependencies Resolved

===========================================================================================

Package

Arch Version Repository Size

===========================================================================================

Installing:

docker-io

x86_64 1.1.2-1.el6 epel 4.5 M

Installing for dependencies:

lua-alt-getopt noarch 0.7.0-1.el6 epel 6.9 k

lua-filesystem x86_64 1.4.2-1.el6 epel 24 k

lua-lxc

x86_64 1.0.6-1.el6 epel 15 k

lxc

x86_64 1.0.6-1.el6 epel 120 k

lxc-libs

x86_64 1.0.6-1.el6 epel 248 k

Transaction Summary

===========================================================================================

Install 6 Package(s)

许多文档介绍到这里,下一步为挂载/cgroup文件系统,我的docker版本为1.1.2,没有修改/etc/fstab的步骤。

5.启动试运行

复制代码

代码如下:

# service docker start

//或

# docker-d

6.以守护模式运行docker.io(在一个新的终端里)

复制代码

代码如下:

[root@localhost~]# docker-d

2013/08/21 07:47:07 WARNING: Your kernel does not support cgroup swap limit.

2013/08/21 07:47:07 Listening for HTTP on/var/run/docker.sock(unix)

7.在centos6.4容器里输出hello world

复制代码

代码如下:

[root@localhost~]# docker run centos:6.4 echo"hello world"

2013/08/21 07:48:41 POST/v1.4/containers/create

2013/08/21 07:48:41 POST/v1.4/containers/c6bc9e80097e/start

2013/08/21 07:48:41 POST/v1.4/containers/c6bc9e80097e/attach?logs=1stderr=1stdout=1stream=1

hello world

8.从容器里测试ping

复制代码

代码如下:

[root@localhost~]# docker-dns'8.8.8.8' run centos:6.4 ping-c 3 yahoo.com

2013/08/21 08:02:15 POST/v1.4/containers/create

2013/08/21 08:02:15 POST/v1.4/containers/c40a1244f9bc/start

2013/08/21 08:02:15 POST/v1.4/containers/c40a1244f9bc/attach?logs=1stderr=1stdout=1stream=1

PING yahoo.com(98.138.253.109) 56(84) bytes of data.

64 bytes from ir1.fp.vip.ne1.yahoo.com(98.138.253.109): icmp_seq=1 ttl=48 time=323 ms

64 bytes from ir1.fp.vip.ne1.yahoo.com(98.138.253.109): icmp_seq=2 ttl=48 time=329 ms

64 bytes from ir1.fp.vip.ne1.yahoo.com(98.138.253.109): icmp_seq=3 ttl=49 time=302 ms

--- yahoo.com ping statistics---

3 packets transmitted, 3 received, 0% packet loss, time 2304ms

rtt min/avg/max/mdev= 302.032/318.318/329.656/11.807 ms

9.异常

在我的一次安装过程中,很不幸遇到下面的问题:

docker-d启动,或tail-f/var/log/docker查看日志

复制代码

代码如下:

[f32e7d9f]+job initserver()

[f32e7d9f.initserver()] Creating server

[f32e7d9f]+job serveapi(unix:///var/run/docker.sock)

2014/10/22 13:02:45 Listening for HTTP on unix(/var/run/docker.sock)

Error running DeviceCreate(createPool) dm_task_run failed

[f32e7d9f]-job initserver()= ERR(1)

2014/10/22 13:02:45 Error running DeviceCreate(createPool) dm_task_run failed

\nWed Oct 22 14:35:54 CST 2014\n

再或者是service docker restart

复制代码

代码如下:

Stopping docker:

[ OK ]

Starting cgconfig service: Error: cannot mount cpuset to/cgroup/cpuset: Device or resource busy

/sbin/cgconfigparser; error loading/etc/cgconfig.conf: Cgroup mounting failed

Failed to parse/etc/cgconfig.conf

[FAILED]

Starting docker:

[ OK ]

全选复制放进笔记Unable to enable network bridge NAT: iptables failed: iptables-I POSTROUTING-t nat-s 172.17.42.1/16!-d 172.17.42.1/16-j MASQUERADE: iptables v1.4.7: can't initialize iptables table `nat': Table does not exist(do you need to insmod?)

Perhaps iptables or your kernel needs to be upgraded.

centos 6.6怎么升级内核

1.准备工作

确认内核及版本信息

[root@hostname~]# uname-r

2.6.32-220.el6.x86_64

[root@hostname~]# cat/etc/centos-release

CentOS release 6.5(Final)

安装软件

编译安装新内核,依赖于开发环境和开发库

# yum grouplist//查看已经安装的和未安装的软件包组,来判断我们是否安装了相应的开发环境和开发库;

# yum groupinstall"Development Tools"//一般是安装这两个软件包组,这样做会确定你拥有编译时所需的一切工具

# yum install ncurses-devel//你必须这样才能让 make*config这个指令正确地执行

# yum install qt-devel//如果你没有 X环境,这一条可以不用

# yum install hmaccalc zlib-devel binutils-devel elfutils-libelf-devel//创建 CentOS-6内核时需要它们

如果当初安装系统是选择了Software workstation,上面的安装包几乎都已包含。

2.编译内核

获取并解压内核源码,配置编译项

Linux内核版本有两种:稳定版和开发版,Linux内核版本号由3个数字组成:r.x.y

r:主版本号

x:次版本号,偶数表示稳定版本;奇数表示开发中版本。

y:修订版本号,表示修改的次数

去 首页,可以看到有stable, longterm等版本,longterm是比stable更稳定的版本,会长时间更新,因此我选择 3.10.58。

[root@sean~]#wget

[root@sean~]# tar-xf linux-3.10.58.tar.xz-C/usr/src/

[root@sean~]# cd/usr/src/linux-3.10.58/

[root@sean linux-3.10.58]# cp/boot/config-2.6.32-220.el6.x86_64.config

我们在系统原有的内核配置文件的基础上建立新的编译选项,所以复制一份到当前目录下,命名为.config。接下来继续配置:

[root@sean linux-3.10.58]# sh-c'yes""| make oldconfig'

HOSTCC scripts/basic/fixdep

HOSTCC scripts/kconfig/conf.o

SHIPPED scripts/kconfig/zconf.tab.c

SHIPPED scripts/kconfig/zconf.lex.c

SHIPPED scripts/kconfig/zconf.hash.c

HOSTCC scripts/kconfig/zconf.tab.o

HOSTLD scripts/kconfig/conf

scripts/kconfig/conf--oldconfig Kconfig

.config:555:warning: symbol value'm' invalid for PCCARD_NONSTATIC

.config:2567:warning: symbol value'm' invalid for MFD_WM8400

.config:2568:warning: symbol value'm' invalid for MFD_WM831X

.config:2569:warning: symbol value'm' invalid for MFD_WM8350

.config:2582:warning: symbol value'm' invalid for MFD_WM8350_I2C

.config:2584:warning: symbol value'm' invalid for AB3100_CORE

.config:3502:warning: symbol value'm' invalid for MMC_RICOH_MMC

*

* Restart config...

*

*

* General setup

*

......

XZ decompressor tester(XZ_DEC_TEST) [N/m/y/?](NEW)

Averaging functions(AVERAGE) [Y/?](NEW) y

CORDIC algorithm(CORDIC) [N/m/y/?](NEW)

JEDEC DDR data(DDR) [N/y/?](NEW)

#

# configuration written to.config

make oldconfig会读取当前目录下的.config文件,在.config文件里没有找到的选项则提示用户填写,然后备份.config文件为.config.old,并生成新的.config文件,参考

有的文档里介绍使用make memuconfig,它便是根据需要定制模块,类似界面如下:(在此不需要)

开始编译

[root@sean linux-3.10.58]# make-j4 bzImage//生成内核文件

[root@sean linux-3.10.58]# make-j4 modules//编译模块

[root@sean linux-3.10.58]# make-j4 modules_install//编译安装模块

-j后面的数字是线程数,用于加快编译速度,一般的经验是,逻辑CPU,就填写那个数字,例如有8核,则为-j8。(modules部分耗时30多分钟)

安装

[root@sean linux-3.10.58]# make install

实际运行到这一步时,出现ERROR: modinfo: could not find module vmware_balloon,但是不影响内核安装,是由于vsphere需要的模块没有编译,要避免这个问题,需要在make之前时修改.config文件,加入

HYPERVISOR_GUEST=yCONFIG_VMWARE_BALLOON=m

(这一部分比较容易出问题,参考下文异常部分)

修改grub引导,重启

安装完成后,需要修改Grub引导顺序,让新安装的内核作为默认内核。

编辑 grub.conf文件,

vi/etc/grub.conf

#boot=/dev/sda

default=0

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu

title CentOS(3.10.58)

root(hd0,0)

...

数一下刚刚新安装的内核在哪个位置,从0开始,然后设置default为那个数字,一般新安装的内核在第一个位置,所以设置default=0。

重启reboot:

boot-with-new-kernel

确认当内核版本

[root@sean~]# uname-r

3.10.58

升级内核成功!

3.异常

编译失败(如缺少依赖包)

可以先清除,再重新编译:

# make mrproper#完成或者安装过程出错,可以清理上次编译的现场

# make clean

在vmware虚拟机上编译,出现类似下面的错误

[root@sean linux-3.10.58]# make install

sh/usr/src/linux-3.10.58/arch/x86/boot/install.sh 3.10.58 arch/x86/boot/bzImage\

System.map"/boot"

ERROR: modinfo: could not find module vmware_balloon

可以忽略,如果你有强迫症的话,尝试以下办法:

要在vmware上需要安装VMWARE_BALLOON,可直接修改.config文件,但如果vi直接加入CONFIG_VMWARE_BALLOON=m依然是没有效果的,因为它依赖于HYPERVISOR_GUEST=y。如果你不知道这层依赖关系,通过make menuconfig后,Device Drivers-> MISC devices下是找不到VMware Balloon Driver的。(手动vi.config修改HYPERVISOR_GUEST后,便可以找到这一项),另外,无论是通过make menuconfig或直接vi.config,最后都要运行sh-c'yes""| make oldconfig'一次得到最终的编译配置选项。

然后,考虑到vmware_balloon可能在这个版本里已更名为vmw_balloon,通过下面的方法保险起见:

# cd/lib/modules/3.10.58/kernel/drivers/misc/

# ln-s vmw_balloon.ko vmware_balloon.ko#建立软连接

其实,针对安装docker的内核编译环境,最明智的选择是使用sciurus帮我们配置好的.config文件。

也建议在make bzImage之前,运行脚本check-config.sh检查当前内核运行docker所缺失的模块。

当提示缺少其他module时如NF_NAT_IPV4时,也可以通过上面的方法解决,然后重新编译。

4.几个重要的Linux内核文件介绍

在网络中,不少服务器采用的是Linux系统。为了进一步提高服务器的性能,可能需要根据特定的硬件及需求重新编译Linux内核。编译Linux内核,需要根据规定的步骤进行,编译内核过程中涉及到几个重要的文件。比如对于RedHat Linux,在/boot目录下有一些与Linux内核有关的文件,进入/boot执行:ls–l。编译过RedHat Linux内核的人对其中的System.map、vmlinuz、initrd-2.4.7-10.img印象可能比较深刻,因为编译内核过程中涉及到这些文件的建立等操作。那么这几个文件是怎么产生的?又有什么作用呢?

(1)vmlinuz

vmlinuz是可引导的、压缩的内核。“vm”代表“Virtual Memory”。Linux支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制。Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,它位于/boot/vmlinuz,它一般是一个软链接。

vmlinuz的建立有两种方式。

一是编译内核时通过“make zImage”创建,然后通过:“cp/usr/src/linux-2.4/arch/i386/linux/boot/zImage/boot/vmlinuz”产生。zImage适用于小内核的情况,它的存在是为了向后的兼容性。

二是内核编译时通过命令make bzImage创建,然后通过:“cp/usr/src/linux-2.4/arch/i386/linux/boot/bzImage/boot/vmlinuz”产生。

bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”。 bzImage中的b是“big”意思。

zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码。所以你不能用gunzip或 gzip–dc解包vmlinuz。

内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。

vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。

(2) initrd-x.x.x.img

initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。比如,使用的是scsi硬盘,而内核vmlinuz中并没有这个scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/modules下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题。initrd-2.4.7-10.img是用gzip压缩的文件,下面来看一看这个文件的内容。

initrd实现加载一些模块和安装文件系统等。

initrd映象文件是使用mkinitrd创建的。mkinitrd实用程序能够创建initrd映象文件。这个命令是RedHat专有的。其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd

下面的命令创建initrd映象文件:

(3) System.map

System.map是一个特定内核的内核符号表。它是你当前运行的内核的System.map的链接。

内核符号表是怎么创建的呢? System.map是由“nm vmlinux”产生并且不相关的符号被滤出。对于本文中的例子,编译内核时,System.map创建在/usr/src/linux-2.4/System.map。像下面这样:

nm/boot/vmlinux-2.4.7-10> System.map

下面几行来自/usr/src/linux-2.4/Makefile:

nm vmlinux| grep-v'(compiled)|(.o

)|([aUw])|(..ng

)|(LASH[RL]DI)'| sort> System.map

然后复制到/boot:

cp/usr/src/linux/System.map/boot/System.map-2.4.7-10

在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号。

Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名。比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。

对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,当内核运行时使用地址。

然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号。这由符号表来完成,符号表是所有符号连同它们的地址的列表。Linux符号表使用到2个文件:/proc/ksyms和System.map。

/proc/ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map具有的是错误的符号信息。每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。

虽然内核本身并不真正使用System.map,但其它程序比如klogd, lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。

另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。

Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map:

/boot/System.map

/System.map

/usr/src/linux/System.map

System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。

为什么企业都用centos而不是debian

我们运行着一些全球最大的互联网的营运,因此我们对可靠性和稳定性非常重视,是我们的第一要务。为此,我们只使用Linux来支撑顾客的系统。但是,我们应该使用哪一个Linux的发行版?答案是,CentOS。为什么呢?

作为一个庞大的系统运营商,在很长的一段时间里,我们需要在多种大型系统中找到一个可靠的,可预测的系统,我们需要从世界上最强大的软件供应商和开源项目中获得强有力的支持。对于那些最常用的系统,我们需要文档,工具和全球性资源。

正因如此,RedHat/ CentOS系列发行版正是我们的选择。他们能够满足以上所有需求,而且问题相对较少、长期稳定,这使得我们能够为成千上万的运行了不同配置、服务和应用的系统提供世界级的维护。

RedHat’s Enterprise Linux

(RHEL)是黄金标准的企业发行版。它每五年左右更新一次,在系统的稳定性,前瞻性和安全性上有着极大的优势。每当新的主版本发行后,比如

5.x亦或最近的6.x,所有版本和代码都将保留不变,只有安全问题或是主要的bug,例如后门,端口之类的问题,会通过发布新的子版本来修复。

CentOS是RHEL发行版对应的开源版本,通常在RedHat的发布后就会很快发行。我们使用CentOS的原因在于RHEL发行版的标准支持服务费用非常高,大约每台服务器800美元左右,对于我们很多拥有数十台甚至上百台服务器的用户来说,这是必须要控制的成本。

RHEL/CentOS系统有两个潜在的问题。

首先,一旦确定了主版本,,除了安全问题和严重故障会被修复以外,其他内容将不会做任何改变。这虽然对稳定性有

好处,但是对许多服务不利。比如MySQL和PHP服务,它们在这五年的CentOS/RHEL主版本发布周期中会进行繁重的开发和大量的修改。例

如,MySQL5.0是当前RHEL/CentOS主版本所默认使用的版本,但是当前MySQL已经更新到5.1和5.5版本了。

幸运的是,这个问题被Yum软件包管理器轻易地解决了。如此以来,那些主要的软件,例如当前RHEL/CentOS中实际的组件,包括内核和所有工

具等仍然来自发行版,但是那些附加的软件,例如Nginx,Apache,PHP,Java和MySQL等等来自更新的软件源例如Fedora;

或者直接从开发商获取更新的版本例如MySQL。在我们这里,我们有自己专用的安装镜像来全自动的处理所有这些事情。

其次,CentOS的发行会滞后于RedHat的发行,包括关键的补丁和修复。这在RHEL 6.x的发行周期中尤为显著。但是根据我们的经验,这没什么好担心的,对我们来说永远不会成为问题。

很多人询问我们为什么不用基于Debian的系统,例如Debian或者Ubuntu服务器。如果在别无选择的情况下,我们的确会支持这个建议,但是根据我们的经验来看,这些系统并不如RHEL/CentOS来的稳定和可靠。

我们认为,这在某种程度上是由于他们过快的发展和各个版本、组合之间较少的测试且不成熟所导致的。然而尽管他们非常流行,但是主要的服务商和项目都

仍然首选RHEL/CentOS系统,因为这样他们就可以为企业顾客提供服务,(对Oracle和MySQL更是如此)。除此之外,基于Debian的系统有许多内核和稳定性问题,尤其是在我们的云计算服务中。

对我们而言,唯一使用Debian/Ubuntu的原因是:

“它们能够为一个系统提供必要的特殊服务时,尤其是当一些驱动程序或者一些IO子系统需要一种新的内核的时候”。例如,ext4文件系统或在最近的内核中日志的改变等;现在,所有这一切都包含在了RHEL/CentOS6.x中。

当然,多数Linux开发者都使用的是Ubuntu的桌面版,而且可以理解的是,他们更倾向在开发生产时使用相同的系统,并且还能使用很多有趣的工具。但总体上来说,我们依然认为RHEL/CentOS是一个更优越的部署平台,并且已经有十多个客户成功地转向使用CentOS作为生产环境并且没有任何问题,但这仍然是艰巨的任务。

总的来说,你将更乐于看到一个良好管理的CentOS系统。我们有成千上万台服务器使用CentOS平台,而每年平均只有一台服务器崩溃。我们也很难想象它竟如此罕见,所以,挑一个优秀、迅捷、可靠的平台吧!

阅读剩余
THE END