centos 怎么升级 centos可以直接升级吗
大家好,centos 怎么升级相信很多的网友都不是很明白,包括centos可以直接升级吗也是一样,不过没有关系,接下来就来为大家分享关于centos 怎么升级和centos可以直接升级吗的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!
从Centos7升级到Centos8的教程
在进行正式环境的升级之前,务必要对数据进行备份,同时保存重要配置信息。因为升级过程中可能会卸载部分应用。请注意,CentOS 8已于2021年12月31日停止支持,建议迁移至其他发行版,例如可参考作者从Centos-7迁移到RockyLinux-8、AlmaLinux-8的教程。
注意:升级前请备份好数据,升级可能会导致ssh的root用户无法登录、网卡名称发生改变、引导丢失无法开机等问题,如果不知道怎么处理,请进群咨询。
群号:831037125(CentOS、RockyLinux、AlmaLinux升级交流群)
1.安装epel源
2.更新系统至最新版本,以防止升级时出现各种异常问题
3.重启系统
4.安装rpmconf和yum-utils
5.执行rpmconf,如果出现提示,请输入Y和回车继续,如果未出现提示,则继续进行第四步操作
6.安装dnf
7.移除yum和yum-metadata-parser
8.安装Centos8的源和升级epel源
9.卸载centos7的内核
10.升级到centos8,这一步可能会报错,如果没有报错,则进行第10步操作
替换Centos源为过期源
开始升级
执行完上面的命令后,如果出现以下错误:
请将红框内的包名(可能存在多个包,重复以下步骤)替换到以下命令中:
命令:
如:
然后继续以下操作:
发现报错后,先卸载类似于图上from package后面的包名
卸载完成后,再次执行升级
11.执行rpmconf,会出现如下界面,一直输入Y和回车即可
12.安装内核(以防某些情况下开机失败,开机失败的可以使用Centos8 ISO镜像救援模式安装内核)
13.本步骤可选择性执行,执行本步骤可以解决安装yum时出现的报错。
14.安装基础环境
15.执行以下命令,以防迁移完成后找不到引导,重启后无法开机。根据以下命令选择分区表类型,根据分区表类型执行相关命令:
查看分区表类型
GPT分区表
MBR分区表
GPT分区(UFFI的BIOS)
添加UEFI启动项(注意/dev/nvme0n1为efi分区所在磁盘,需根据实际情况自行选择磁盘路径,具体参考上图,-p后面是分区位置(默认为1),efi分区为/dev/nvme0n1p1值就是1,efi分区为/dev/nvme0n1p2值就是2)
MBR分区(传统的BIOS、dos、msdos)(注意/dev/nvme0n1需根据实际情况自行选择磁盘路径,具体参考上图)
16.重启机器
Linux怎么升级软件版本
在Linux系统中,升级软件版本是常见的操作。了解如何正确升级,可以避免系统冲突,提高软件性能。本文将详细介绍Linux中几种主要的软件安装方式,及其升级方法。
一、系统包管理器安装
系统包管理器是Linux中常见的软件安装方式。例如在CentOS中,使用yum或dnf命令进行软件升级,如“yum update nginx”。此方法会自动更新软件及其所有依赖,确保系统稳定性。
优点:自动化管理,方便快捷,确保依赖关系的同步更新。
缺点:可能影响其他依赖软件,需谨慎操作。
二、源码编译安装
对于从源代码编译安装的软件,可先指定安装路径,如“./configure--prefix=/opt/nginx-1.18”。编译新版本后,切换服务路径,实现升级。
优点:提供高度定制化,便于维护和管理。
缺点:操作复杂,容易出错,升级后需手动切换服务路径。
三、二进制包安装
二进制包安装是将软件打包为可直接执行的文件,如.tar.gz或.deb。在Linux中,此方法广泛应用于系统包管理器安装的软件。
优点:易于部署和使用,系统兼容性好。
缺点:升级可能需下载新包,操作相对繁琐。
四、AppImage
AppImage是一种打包格式,包含软件及其依赖,几乎可在所有Linux发行版上运行。适用于单文件应用。
优点:跨平台兼容性好,易于分发和部署。
缺点:需逐个下载AppImage文件,对于大型应用不适用。
五、Snap和Flatpak
Snap和Flatpak是统一Linux应用包格式的尝试,旨在让软件跨操作系统和发行版运行。
优点:提供更统一的软件部署和管理环境。
缺点:生态系统仍在发展中,兼容性和应用范围受限。
总结:在生产环境中,推荐使用系统包管理器或官方二进制包进行软件部署和升级,以避免影响其他依赖软件。避免使用系统组件,以免因系统升级导致服务异常。通过实践与理论结合,深入理解Linux软件管理,将有助于提高系统维护效率。
centos 6.6怎么升级内核
1.准备工作
确认内核及版本信息
[root@hostname~]# uname-r
2.6.32-220.el6.x86_64
[root@hostname~]# cat/etc/centos-release
CentOS release 6.5(Final)
安装软件
编译安装新内核,依赖于开发环境和开发库
# yum grouplist//查看已经安装的和未安装的软件包组,来判断我们是否安装了相应的开发环境和开发库;
# yum groupinstall"Development Tools"//一般是安装这两个软件包组,这样做会确定你拥有编译时所需的一切工具
# yum install ncurses-devel//你必须这样才能让 make*config这个指令正确地执行
# yum install qt-devel//如果你没有 X环境,这一条可以不用
# yum install hmaccalc zlib-devel binutils-devel elfutils-libelf-devel//创建 CentOS-6内核时需要它们
如果当初安装系统是选择了Software workstation,上面的安装包几乎都已包含。
2.编译内核
获取并解压内核源码,配置编译项
Linux内核版本有两种:稳定版和开发版,Linux内核版本号由3个数字组成:r.x.y
r:主版本号
x:次版本号,偶数表示稳定版本;奇数表示开发中版本。
y:修订版本号,表示修改的次数
去 首页,可以看到有stable, longterm等版本,longterm是比stable更稳定的版本,会长时间更新,因此我选择 3.10.58。
[root@sean~]#wget
[root@sean~]# tar-xf linux-3.10.58.tar.xz-C/usr/src/
[root@sean~]# cd/usr/src/linux-3.10.58/
[root@sean linux-3.10.58]# cp/boot/config-2.6.32-220.el6.x86_64.config
我们在系统原有的内核配置文件的基础上建立新的编译选项,所以复制一份到当前目录下,命名为.config。接下来继续配置:
[root@sean linux-3.10.58]# sh-c'yes""| make oldconfig'
HOSTCC scripts/basic/fixdep
HOSTCC scripts/kconfig/conf.o
SHIPPED scripts/kconfig/zconf.tab.c
SHIPPED scripts/kconfig/zconf.lex.c
SHIPPED scripts/kconfig/zconf.hash.c
HOSTCC scripts/kconfig/zconf.tab.o
HOSTLD scripts/kconfig/conf
scripts/kconfig/conf--oldconfig Kconfig
.config:555:warning: symbol value'm' invalid for PCCARD_NONSTATIC
.config:2567:warning: symbol value'm' invalid for MFD_WM8400
.config:2568:warning: symbol value'm' invalid for MFD_WM831X
.config:2569:warning: symbol value'm' invalid for MFD_WM8350
.config:2582:warning: symbol value'm' invalid for MFD_WM8350_I2C
.config:2584:warning: symbol value'm' invalid for AB3100_CORE
.config:3502:warning: symbol value'm' invalid for MMC_RICOH_MMC
*
* Restart config...
*
*
* General setup
*
......
XZ decompressor tester(XZ_DEC_TEST) [N/m/y/?](NEW)
Averaging functions(AVERAGE) [Y/?](NEW) y
CORDIC algorithm(CORDIC) [N/m/y/?](NEW)
JEDEC DDR data(DDR) [N/y/?](NEW)
#
# configuration written to.config
make oldconfig会读取当前目录下的.config文件,在.config文件里没有找到的选项则提示用户填写,然后备份.config文件为.config.old,并生成新的.config文件,参考
有的文档里介绍使用make memuconfig,它便是根据需要定制模块,类似界面如下:(在此不需要)
开始编译
[root@sean linux-3.10.58]# make-j4 bzImage//生成内核文件
[root@sean linux-3.10.58]# make-j4 modules//编译模块
[root@sean linux-3.10.58]# make-j4 modules_install//编译安装模块
-j后面的数字是线程数,用于加快编译速度,一般的经验是,逻辑CPU,就填写那个数字,例如有8核,则为-j8。(modules部分耗时30多分钟)
安装
[root@sean linux-3.10.58]# make install
实际运行到这一步时,出现ERROR: modinfo: could not find module vmware_balloon,但是不影响内核安装,是由于vsphere需要的模块没有编译,要避免这个问题,需要在make之前时修改.config文件,加入
HYPERVISOR_GUEST=yCONFIG_VMWARE_BALLOON=m
(这一部分比较容易出问题,参考下文异常部分)
修改grub引导,重启
安装完成后,需要修改Grub引导顺序,让新安装的内核作为默认内核。
编辑 grub.conf文件,
vi/etc/grub.conf
#boot=/dev/sda
default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title CentOS(3.10.58)
root(hd0,0)
...
数一下刚刚新安装的内核在哪个位置,从0开始,然后设置default为那个数字,一般新安装的内核在第一个位置,所以设置default=0。
重启reboot:
boot-with-new-kernel
确认当内核版本
[root@sean~]# uname-r
3.10.58
升级内核成功!
3.异常
编译失败(如缺少依赖包)
可以先清除,再重新编译:
# make mrproper#完成或者安装过程出错,可以清理上次编译的现场
# make clean
在vmware虚拟机上编译,出现类似下面的错误
[root@sean linux-3.10.58]# make install
sh/usr/src/linux-3.10.58/arch/x86/boot/install.sh 3.10.58 arch/x86/boot/bzImage\
System.map"/boot"
ERROR: modinfo: could not find module vmware_balloon
可以忽略,如果你有强迫症的话,尝试以下办法:
要在vmware上需要安装VMWARE_BALLOON,可直接修改.config文件,但如果vi直接加入CONFIG_VMWARE_BALLOON=m依然是没有效果的,因为它依赖于HYPERVISOR_GUEST=y。如果你不知道这层依赖关系,通过make menuconfig后,Device Drivers-> MISC devices下是找不到VMware Balloon Driver的。(手动vi.config修改HYPERVISOR_GUEST后,便可以找到这一项),另外,无论是通过make menuconfig或直接vi.config,最后都要运行sh-c'yes""| make oldconfig'一次得到最终的编译配置选项。
然后,考虑到vmware_balloon可能在这个版本里已更名为vmw_balloon,通过下面的方法保险起见:
# cd/lib/modules/3.10.58/kernel/drivers/misc/
# ln-s vmw_balloon.ko vmware_balloon.ko#建立软连接
其实,针对安装docker的内核编译环境,最明智的选择是使用sciurus帮我们配置好的.config文件。
也建议在make bzImage之前,运行脚本check-config.sh检查当前内核运行docker所缺失的模块。
当提示缺少其他module时如NF_NAT_IPV4时,也可以通过上面的方法解决,然后重新编译。
4.几个重要的Linux内核文件介绍
在网络中,不少服务器采用的是Linux系统。为了进一步提高服务器的性能,可能需要根据特定的硬件及需求重新编译Linux内核。编译Linux内核,需要根据规定的步骤进行,编译内核过程中涉及到几个重要的文件。比如对于RedHat Linux,在/boot目录下有一些与Linux内核有关的文件,进入/boot执行:ls–l。编译过RedHat Linux内核的人对其中的System.map、vmlinuz、initrd-2.4.7-10.img印象可能比较深刻,因为编译内核过程中涉及到这些文件的建立等操作。那么这几个文件是怎么产生的?又有什么作用呢?
(1)vmlinuz
vmlinuz是可引导的、压缩的内核。“vm”代表“Virtual Memory”。Linux支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制。Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,它位于/boot/vmlinuz,它一般是一个软链接。
vmlinuz的建立有两种方式。
一是编译内核时通过“make zImage”创建,然后通过:“cp/usr/src/linux-2.4/arch/i386/linux/boot/zImage/boot/vmlinuz”产生。zImage适用于小内核的情况,它的存在是为了向后的兼容性。
二是内核编译时通过命令make bzImage创建,然后通过:“cp/usr/src/linux-2.4/arch/i386/linux/boot/bzImage/boot/vmlinuz”产生。
bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”。 bzImage中的b是“big”意思。
zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码。所以你不能用gunzip或 gzip–dc解包vmlinuz。
内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。
vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
(2) initrd-x.x.x.img
initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。比如,使用的是scsi硬盘,而内核vmlinuz中并没有这个scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/modules下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题。initrd-2.4.7-10.img是用gzip压缩的文件,下面来看一看这个文件的内容。
initrd实现加载一些模块和安装文件系统等。
initrd映象文件是使用mkinitrd创建的。mkinitrd实用程序能够创建initrd映象文件。这个命令是RedHat专有的。其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd
下面的命令创建initrd映象文件:
(3) System.map
System.map是一个特定内核的内核符号表。它是你当前运行的内核的System.map的链接。
内核符号表是怎么创建的呢? System.map是由“nm vmlinux”产生并且不相关的符号被滤出。对于本文中的例子,编译内核时,System.map创建在/usr/src/linux-2.4/System.map。像下面这样:
nm/boot/vmlinux-2.4.7-10> System.map
下面几行来自/usr/src/linux-2.4/Makefile:
nm vmlinux| grep-v'(compiled)|(.o
)|([aUw])|(..ng
)|(LASH[RL]DI)'| sort> System.map
然后复制到/boot:
cp/usr/src/linux/System.map/boot/System.map-2.4.7-10
在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号。
Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名。比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。
对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,当内核运行时使用地址。
然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号。这由符号表来完成,符号表是所有符号连同它们的地址的列表。Linux符号表使用到2个文件:/proc/ksyms和System.map。
/proc/ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map具有的是错误的符号信息。每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核本身并不真正使用System.map,但其它程序比如klogd, lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。
另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。
Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map:
/boot/System.map
/System.map
/usr/src/linux/System.map
System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。