服务器架构?服务器配置

服务器类型的架构

按服务器的处理器架构(也就是服务器CPU所采用的指令系统)划分把服务器分为CISC架构服务器、RISC架构服务器和VLIW架构服务器三种。 CISC的英文全称为“Complex Instruction Set Computer”,即“复杂指令系统计算机”,从计算机诞生以来,人们一直沿用CISC指令集方式。早期的桌面软件是按CISC设计的,所以,微处理器(CPU)厂商一直在走CISC的发展道路,包括Intel、AMD,还有其他一些已经更名的厂商,如TI(德州仪器)、Cyrix以及VIA(威盛)等。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。CISC架构的服务器主要以IA-32架构(Intel Architecture,英特尔架构)为主,而且多数为中低档服务器所采用。

如果企业的应用都是基于NT平台的应用,那么服务器的选择基本上就定位于IA架构(CISC架构)的服务器。如果企业的应用主要是基于Linux操作系统,那么服务器的选择也是基于IA结构的服务器。如果应用必须是基于Solaris的,那么服务器只能选择SUN服务器。如果应用基于AIX(IBM的Unix操作系统)的,那么只能选择IBM Unix服务器(RISC架构服务器)。台式服务器也称为“塔式服务器”。有的台式服务器采用大小与普通立式计算机大致相当的机箱,有的采用大容量的机箱,像个硕大的柜子。低档服务器由于功能较弱,整个服务器的内部结构比较简单,所以机箱不大,都采用台式机箱结构。这里所介绍的台式不是平时普通计算机中的台式,立式机箱也属于台式机范围,这类服务器在整个服务器市场中占有相当大的份额。

优点:塔式服务器它的外形以及结构都跟我们平时使用的立式PC差不多,由于服务器的主板扩展性较强、插槽也多出一堆,所以个头比普通主板大一些,因此塔式服务器的主机机箱也比标准的ATX机箱要大,一般都会预留足够的内部空间以便日后进行硬盘和电源的冗余扩展。

由于塔式服务器的机箱比较大,服务器的配置也可以很高,冗余扩展更可以很齐备,所以它的应用范围非常广,应该说目前使用率最高的一种服务器就是塔式服务器。

缺点:目前常见的入门级和工作组级服务器基本上都采用这一服务器结构类型,不过由于只有一台主机,即使进行升级扩张也有个限度,所以在一些应用需求较高的企业中,单机服务器就无法满足要求了,需要多机协同工作,而塔式服务器个头太大,独立性太强,协同工作在空间占用和系统管理上都不方便,这也是塔式服务器的局限性。不过,总的来说,这类服务器的功能、性能基本上能满足大部分企业用户的要求,其成本通常也比较低,因此这类服务器还是拥有非常广泛的应用支持。机架式服务器的外形看来不像计算机,而像交换机,有1U(1U=1.75英寸)、2U、4U等规格。机架式服务器安装在标准的19英寸机柜里面。这种结构的多为功能型服务器。

优点:作为为互联网设计的服务器模式,机架服务器是一种外观按照统一标准设计的服务器,配合机柜统一使用。可以说机架式是一种优化结构的塔式服务器,它的设计宗旨主要是为了尽可能减少服务器空间的占用,而减少空间的直接好处就是在机房托管的时候价格会便宜很多。

很多专业网络设备都是采用机架式的结构(多为扁平式,就像个抽屉),如交换机、路由器、硬件防火墙这些。机架服务器的宽度为19英寸,高度以U为单位(1U=1.75英寸=44.45毫米),通常有1U,2U,3U,4U,5U,7U)几种标准的服务器。机柜的尺寸也是采用通用的工业标准,通常从22U到42U不等;机柜内按U的高度有可拆卸的滑动拖架,用户可以根据自己服务器的标高灵活调节高度,以存放服务器、集线器、磁盘阵列柜等网络设备。服务器摆放好后,它的所有I/O线全部从机柜的后方引出(机架服务器的所有接口也在后方),统一安置在机柜的线槽中,一般贴有标号,便于管理。

缺点:机架式服务器因为空间比塔式服务器大大缩小,所以这类服务器在扩展性和散热问题上受到一定的限制,配件也要经过一定的筛选,一般都无法实现太完整的设备扩张,所以单机性能就比较有限,应用范围也比较有限,只能专注于某一方面的应用,如远程存储和Web服务的提供等在一些高档企业服务器中由于内部结构复杂,内部设备较多,有的还具有许多不同的设备单元或几个服务器都放在一个机柜中,这种服务器就是机柜式服务器。

对于证券、银行、邮电等重要企业,则应采用具有完备的故障自修复能力的系统,关键部件应采用冗余措施,对于关键业务使用的服务器也可以采用双机热备份高可用系统或者是高性能计算机,这样的系统可用性就可以得到很好的保证。刀片式服务器是一种HAHD(High Availability High Density,高可用高密度)的低成本服务器平台,是专门为特殊应用行业和高密度计算机环境设计的,其中每一块“刀片”实际上就是一块系统母板,类似于一个个独立的服务器。在这种模式下,每一个母板运行自己的系统,服务于指定的不同用户群,相互之间没有关联。不过可以使用系统软件将这些母板集合成一个服务器集群。在集群模式下,所有的母板可以连接起来提供高速的网络环境,可以共享资源,为相同的用户群服务。当前市场上的刀片式服务器有两大类:一类主要为电信行业设计,接口标准和尺寸规格符合PICMG(PCI Industrial Computer Manufacturer's Group)1.x或2.x,未来还将推出符合PICMG 3.x的产品,采用相同标准的不同厂商的刀片和机柜在理论上可以互相兼容;另一类为通用计算设计,接口上可能采用了上述标准或厂商标准,但尺寸规格是厂商自定,注重性能价格比,属于这一类的产品居多。刀片式服务器目前最适合群集计算和IxP提供互联网服务。

优点:刀片服务器适用于数码媒体、医学、航天、军事、通讯等多种领域。其中每一块“刀片”实际上就是一块系统主板。它们可以通过本地硬盘启动自己的操作系统,如Windows NT/2000、Linux、Solaris等等,类似于一个个独立的服务器。

在这种模式下,每一个主板运行自己的系统,服务于指定的不同用户群,相互之间没有关联。不过可以用系统软件将这些主板集合成一个集群服务器。在集群模式下,所有的主板可以连接起来提供高速的网络环境,可以共享资源,为相同的用户群服务。在集群中插入新的“刀片”,就可以提高整体性能。而由于每块“刀片”都是热插拔的,所以,系统可以轻松地进行替换,并且将维护时间减少到最小。值得一提的是,系统配置可以通过一套智能KVM和9个或10个带硬盘的CPU板来实现。CPU可以配置成为不同的子系统。一个机架中的服务器可以通过新型的智能KVM转换板共享一套光驱、软驱、键盘、显示器和鼠标,以访问多台服务器,从而便于进行升级、维护和访问服务器上的文件。

详解服务器GPU架构和基础知识

揭秘GPU架构:高性能计算的幕后英雄

自1985年ATi首次推出图形芯片,GPU这一概念逐渐崭露头角,NVIDIA在1999年的突破性创新将其定义为专为削减CPU依赖而设计的硬件。GPU的核心工作原理包括顶点处理、光栅化、纹理贴图和像素处理,其独特的并行架构赋予了它在密集计算,尤其是3D图形处理中的卓越性能,相较于CPU,GPU展现出了无可比拟的优势。

曾经,CPU几乎承担着所有运算任务,但CISC架构的局限性使得多媒体处理成为难题。Intel的SSE扩展并未完全满足这一需求。GPU的设计理念在于并行处理大量任务,它擅长高密度、并发工作和频繁的内存访问,晶体管主要分布在流处理器和显存控制器上,这使得GPU在性能上远超CPU,成为现代计算的主力军。

图解CPU与GPU的差异

如图所示(图2-1),CPU倾向于复杂指令的控制,而GPU则是由众多小而高效的处理核心组成,它们并行协作,共同提升效率。并行与串行运算的对比(图2-2/3)清晰地展现了这种转变:串行执行受限于单个CPU的指令顺序,而并行计算则通过多处理器同时执行指令,实现了速度的飞跃。

CUDA与OpenCL:GPU计算的双引擎

NVIDIA的CUDA架构革新了GPU计算,它支持C语言编程,将GPU的并行处理能力发挥到极致。CUDA包括开发库(如CUFFT和CUBLAS)、运行时环境和驱动,形成了一套全面的开发框架,兼容不同GPU,提供统一的编程抽象层。

OpenCL则更进一步,作为开放计算语言,它旨在支持更广泛的异构平台并行编程,无论硬件是NVIDIA还是其他厂商,都能实现高效协作。OpenCL通过任务和数据并行机制,极大地扩展了GPU应用的范围,由Khronos Group维护,汇聚了众多行业巨头的力量。

在服务器层面,GPU的重要性不仅仅局限于图形处理,还包括服务器处理器芯片、软件堆栈、RISC架构、服务器基础知识、总线技术、固件、认证体系,以及CPU和内存等关键要素。深入理解这些基础知识,是构建高效服务器系统的基础。

探索更多技术深度

如果你对硬盘基础知识如RAID原理和基础知识(87)、网卡原理(93)、光纤技术(97)和光纤交换机(123)感兴趣,或者想进一步了解FPGA架构(179)和操作系统(186)背后的奥秘,服务器安全(196)以及更多技术资料,不妨参考我们的“架构师技术全店资料打包汇总”(32本电子书,详情请参阅相关链接)。

端游、手游服务端常用的架构是什么样的

在游戏世界中,服务端架构如同舞台的骨架,支撑着端游、手游的多样体验。让我们深入探讨这两种类型的游戏服务器架构,从早期的基础到如今的复杂多变。

类型1:轻量级交互

对于卡牌、跑酷等弱交互型手游,服务端通常采用HTTP协议,非对称加密技术确保玩家身份的安全。数据存储上,MySQL或MongoDB这样的关系型和非关系型数据库显得足够简洁。轮询机制则扮演着消息通知的桥梁,使信息实时传递。

类型2:交互盛宴

相反,第一代游戏服务器如MUD,玩家间的交互强烈,MUDOS采用单线程无阻塞套接字,通过LPC脚本构建游戏世界。早期,玩家通过纯文字指令进行沉浸式体验,数据以文件形式保存,但这一阶段的服务器承载力有限。随着《UO》引入图形元素,图形化网游时代开启,对服务器架构提出了新的挑战。

从MUDOS的演进,我们可以看到第二代服务器(2003年)的诞生,以应对数据管理、负载均衡等问题。文件数据库化、脚本语言升级和网关服务的出现,使得游戏世界更为复杂,但也更高效。

第三代服务器(2007年)的里程碑是《魔兽世界》等,它们进一步拆分网关、基础服务和数据库,复杂性与研发成本同步攀升。这时期的决策更多考虑投资回报,随着用户增长,服务器架构需要逐步升级以满足需求。

无缝地图的引入,如在2005年后的大型MMORPG中,解决了场景切换的性能瓶颈。Node服务器管理区域,OBJ服务器处理玩家操作,而网关服务器负责数据交换,形成三层结构,动态负载均衡技术随之兴起,但网络带宽和客户端性能始终是硬性限制。

对于MMORPG和非MMORPG游戏,服务器架构各有特点。战网游戏服务器采用P2P连接,通过Match Making等技术保证公平竞争。休闲游戏服务器则区分用户数据和游戏数据,提供稳定的游戏体验。现代动作类网游则在动作与RPG元素间寻求平衡,追求实时互动。

游戏服务器的演变,不仅反映技术的进步,也映射出游戏行业的发展逻辑。了解这些变迁,不仅能洞悉技术的脉络,还能预见未来的挑战与机遇。让我们共同关注“技术的演进”章节,探索这个不断变化的游戏世界。

---

以上就是端游和手游服务端架构的深入剖析,每一阶段的变化都伴随着技术的革新与需求的增长。无论是轻盈的HTTP,还是复杂的多层架构,它们都在默默地驱动着游戏体验的进步。让我们期待未来,见证更多创新在游戏服务器领域的诞生。

阅读剩余
THE END