服务器加多核,服务器如何加入域

为什么有人说服务器CPU垃圾

为什么有人说服务器CPU垃圾?

我觉得说服务器CPU垃圾的原因有两点

第一:主频低,游戏体验差点被当成垃圾

什么是服务器CPU,就是用来给服务器使用的,服务器正常24小运行,对待CPU稳定性有很高的要求。另外要同时处理多个请求,但是每个请求并不是那么的复杂,为了满足条件服务器CPU就有了以下几个特点。

正是因为稳定,主频低才合适做服务器CPU,但是当我们把这类CPU拿来家用时,尤其是拿来运行大型的单机游戏,这类对单核频率有要求的游戏来说,可能服务器CPU的表现就不那么的出色,自然很多使用过这类CPU的游戏发烧级玩家会觉得此类CPU很垃圾。

准确的说,可能没有没有认识到此类CPU的针对领域吧,杀牛用羊刀,自然不是那么顺手。

第二:配对主板少,山寨居多,易出问题被当做垃圾

服务器CPU绝大部分都是国外一些服务器拆机然后送到国内的,俗称“大船靠岸”,很多“自称垃圾佬的图吧大佬”喜欢研究的东西。

因为此类CPU的主板很难买到新的,因为生产这些的都去卖服务器了。市场上流通的都是一些拆机主板,大家熟知的华南,科脑、美可可等品牌,也是佩服他们。能魔改成适配的,当然质量上就大打折扣了。很多不懂的小白上车,可能用不了多久主板坏了。城门失火殃及池鱼,怪主板差的同时,CPU也被顺带看做垃圾了。

并且适配的主板如果是一线厂家生产的话价格很高,已经超出了同级别的家用电脑,主板贵,没人买,COU自然便宜,便宜了自然有人认为是垃圾。

我觉得服务器CPU并不是垃圾

看每个人怎么使用了,我个人还在使用者E3处理器,很好用,也不存在什么大的问题。关键看怎么选配,怎么去使用,合适自己的才是最重要的,而不是一味的认为服务器的CPU就是垃圾。

以上是我对这个问题的解答和观点,纯手打,实属不易,也仅表达个人观点,希望能给读者很好的参考,若是觉得写的还可以就给个赞吧。

服务器CPU好比大拖头,桌面CPU好比小轿车。你要拿大拖头来飙车显然飙不过小轿车。但你拿来拉重活试试。高清视频剪辑,3D建模渲染,多任务工作,那服务器CPU哪怕是上代的性能也是杠杠的,而且不用担心工作一半突然给你定住要你重启,倒是你拿来游戏,那么显然不怎么样了。一个是赚钱的工具一个是拿来玩乐。怎么比?

我是很懒的,我才不自己买主板一堆东西自己配。直接买个淘汰下来的品牌工作站主机,除开机自检时间比较久,启动系统后就非常爽了。

很多人的印象中都觉得服务器CPU不值得购买,然而市面上很多服务器CPU都卖的很火,比如英特尔志强E5系列,动辄8核心、10核心的至强CPU只卖不到一千元,然而英特尔和AMD最新款的消费级10核心以上的CPU至少都在3000元以上,从核心数量来看,很多人就是冲着E5这类服务器CPU便宜量又足来的。

当然,对于主流应用和游戏来说,市面上大部分的服务器CPU都不太合适,一方面是因为这些CPU都是老旧服务器淘汰下来的,虽说核心数量多,但是架构较老,频率也不高,真要比玩游戏的话,这些动辄10核心以上的服务器CPU可能还不如酷睿I3效果好。另外,大部分的日常应用对多核心CPU的支持不佳,服务器CPU核心数量虽多,但是反倒派不上用场。

不过即使如此,像至强E5 2000系列的CPU仍然非常热销,工作室买来可以加速视频渲染和3D渲染,提高内容创作效率,还有的游戏工作室专门买这类CPU游戏多开,毕竟核心越多,越能承受多个游戏同时运行的压力,这是那些普通消费级CPU难以相比的。

有的人可能担心这类CPU的保修问题,确实这类服务器CPU基本都属于二手货,没法考虑保修问题,但是CPU正常使用中就很难损坏,唯一值得担心的反倒是主板,这从一定程度上就要看运气了,不过好歹这类平台的价格都不贵,如果是用个两三年坏了也算是用值了。

说服务器cpu垃圾的都是一些不思进取整天呆在家里打游戏的人

不是服务器CPU垃圾,而是人的认知没有到位,觉得对自己用处不大的东西就垃圾,实际上去看看服务器CPU的价格和家用CPU的价格,就知道服务器的CPU到底垃圾不垃圾,当然这里的价格是指一手的价格,不要拿那些洋垃圾的价格来说事情。服务器CPU和家用CPU相比,往往有以下特点,主频低,核心多3,IO性能更强,更注重稳定性。

所以对于普通用户而言,服务器CPU并不是很适合,其中影响最大的还是主频,在桌面处理器已经突破5GHz的情况下,服务器CPU的频率往往还在4GHz徘徊,而且核心数量越多的型号,其频率更低,譬如最新的AMD EPYC系列产品里面,我们可以看到频率最高的是8核16线程的产品,其主频也才4.1GHz,而桌面的8核16线程早就是4.7GHz的水平了,而最高端的EPYC产品,核心数量达到了64核,但是主频最高只有3.675GHz。

而频率对于单线程的性能影响是很关键的,在游戏等项目上面,高主频的CPU往往具有更好的性能表现,这也导致了在游戏等方面的表现中,服务器CPU往往不如桌面CPU,而这个也是服务器CPU垃圾的主要原因,此外我们以AMD EPYC产品的价格为例,我们可以看到服务器的CPU价格远超桌面的产品,所以更加让人觉得服务CPU垃圾。

不过这些钱并不能说是白花了,服务器CPU在IO部分的表现是可以秒杀桌面处理器的,目前的桌面处理器往往也就是支持双通道内存,而服务器CPU直接支持8通道内存了,此外在PCI-E通道数量上面,服务器CPU的数量也远超普通桌面CPU,可以看到EPYC服务器CPU支持高达128个PCI-E通道,而桌面的往往也就是20条左右。

此外在主板的选择上面,服务器CPU往往也不会有很多选择,而且其考虑的也不是家用环境,所以对于普通玩家而言,其周边的配置往往也不合意,而且价格也往往很贵,这进一步让服务器CPU没有那么香了。

当然如果是洋垃圾的话,成本会便宜很多,整体成本可以做得比家用更低,但是主频低的问题依旧无解,主板的话,这个里面的水就比较深了,二手服务器主板,山寨板,HEDT平台的新主板都有,这也导致了搭配出来的平台良莠不一,出点问题就满天飞,给大家带来不好的印象。

总的来说,服务器CPU在今天对于个人用户早就没有必要了,桌面上面的8核16线程也算是很常见的配置了,16核32线程的产品也有了,已经不是当年最高4核8核心的时代了,服务器CPU早就没有那么香了,如果不是玩家的话,就不要去玩服务器CPU了。

服务器CPU垃圾——洋垃圾。

其实这应该分两方面说

在锐龙出现之前,一直是英特尔霸占着CPU市场,无论是双核、四核普通桌面级,还是六核、八核旗舰级,甚至连十核、十二核的服务器CPU也进入了不少家庭。

而多核心低主频的服务器CPU是从哪里来的,这成了他们洋垃圾称号的起源——新型号的太贵用不起,走进家庭的服务器CPU都是些便宜货,是从淘汰的服务器上扒拉下来的。

这样的CPU不好吗?没有什么不好,主频低、发热高而已,并没有太多缺点,性能来说,多核心给多任务、多线程软件提供了很多便利。

但是,这样的CPU需要搭配相应特殊的主板才可以使用,这才是真正有风险、被说成垃圾的地方。

像X58、X79这种主板,市面上很少买的到大厂产品,毕竟是卖服务器的。想要好主板只能买到拆机板。而这时候,科脑、华南、美可可等品牌的X58X79主板就应运而生了。而其做工、质量,都不可能跟技嘉华硕微星比较,但是售价也不低,四五百一张,而且豪华版的卖八百多。没办法,想用多核撑场面,就得靠这种主板,毕竟是新的,有售后。

随着锐龙一代上市,六核、八核的桌面级CPU才有机会走进千家万户,二代锐龙上市,进一步拉低了六核十二线程、八核十六线程CPU的售价,三代锐龙上市,一代二代锐龙价格更低,八核十六线程才一千多点,而且可以搭配质量过硬的大厂主板,还可以使用最新的技术——RGB、M.2、XFR等。这时E5、E7才算是真正到了尴尬的时候——可玩性不高,就像是一头忠实的老牛,只能低头干活,没有任何趣味,而且主板随时翻车。

这就使原本自嘲的洋垃圾真正变成垃圾了——多核多线程的优势在锐龙面前不堪一击,主频没锐龙高,主板质量差。

虽然如此,这并不能说CPU如何如何,毕竟在英特尔挤牙膏的那些年,E5E7填补了多核多线程的空白,而且错不在CPU在主板。要用发展眼光看待它们,它们只是跟不上这两年的科技步伐了。

如果手里还用着E5的用户,请善待它们,它们很老了,但是依然勤勤恳恳。如果新用户装机,买新不买旧就是说给你们听的,感受科技的魅力吧。

服务器CPU一点儿也不垃圾。

华南X79主板烈焰战神,CPU是 E5-2680V2,32G服务器内存,性能杠杠的!

要是追求单核频率高些,2643V2.很划算,主频3.5G,六核心十二线程。2667v2,2673v2都很好。

玩游戏也不差,配个好点儿的显卡就行了。

x99先进些,2678v3很流行,实际体验没多大差异。

主板要用大板,两个或三个显卡插槽。要有m2接口,快很多。四个内存插槽,方便组成双通道。

不服务区cpu并不垃圾反而性价比还很高我做视频剪辑用的就是工包主板x79加至强E5的服务区CPU还用了ECC服务区内存价格低性能好其实适用才是王道如果你玩大型游戏的话主频高的普通版本的cpu很适合但是如果你好做视频图形图像处理的话服务器的cpu你可以考虑一下啊不会让你失望的

因为这些人基本就是没玩过这类CPU,另一方面主要是支持这类CPU的主板太少,而大部分支持这类CPU的主板都是小厂,其实服务器U类别很多,其中不乏有一些最贴近普通PC的单路U,比方说当年的E3 1230,这些CPU都是核心数不高但是主频还是非常不错的,一般都是用来做高性能工作站使用的,这种一般就是I7类型的服务器版。

还有现在的多路服务器CPU的中高端产品,核心数量都是可以动态调整的,比如说AMD的宵龙,动态调整核心,其玩游戏也是非常厉害的。

其实我们很多时候概念还是停留在过去的思想里面里面,其实现在我们的游戏已经对多核做过很好地优化了,虽然服务器版的主频很低,但是你会发现游戏帧速率并没有拉到多地,这说明服务器版的CPU在游戏方面还是可以完全胜任的。

另外很多人喜欢搞服务器CPU主要是因为服务器CPU便宜,U便宜,内存也非常便宜,随便上个64GB的内存也花不了多少钱,最重要的是现在很多经典的服务器CPU也有高主频的,即使在玩游戏方面也十分充足。

另外造成一个最大的误解,就是很多人说服务器CPU垃圾,其实真正的原因是你不会选择,有些CPU天生下来就是为了稳定性,比如一些文件服务器用的2450/2650,其核心主频是非常低的,但是核心数多,其主要目的就是为了保证稳定性,你说你要是用这种服务器CPU玩游戏那就太难为他们了,因为时钟频率太低了。因为低功耗问题这类服务器CPU阉割了大量的ALU单元,其逻辑运算单元完全无法保证复杂的大量逻辑运算,玩游戏当然卡不说帧数还上不去。

你可以淘那些从提供服务器虚拟化那种的CPU,其主频高ALU单元多,虽然在寿命方有损耗但是不影响你玩游戏。总之服务器CPU要看你会不会选择,并且有更好的主板支持的话,我觉得在很多方面吊打消费级CPU是没有任何问题的,尤其是性价比方面。

专业专用

有一说一,一个东西设计成什么样的,大家最好就按照什么样的用法来用。

相信很多朋友没买过云服务器,所以我先讲讲怎么玩云服务器。首先你要挑一个看着顺眼的厂商,然后花钱买(其实应该叫租)一定时长的服务器资源,然后厂商就会给你分配一个虚拟机,这个虚拟机就等于是你自己的了,可以随便怎么玩,比如打个小网站、挂个下载器当网盘之类的都可以。而这些厂商会为大量用户提供这种服务,那么大家应该也可以想到,这些厂商使用的服务器CPU应该具有一下特征:主频低,核心多,可以同时支持大量并发。

但是这些特性,和我们家用用户基本完全没什么关系。一般的游戏和应用对多核的优化不是那么完善,多核特性用处不是很大。主频低会导致很多需要单核性能的应用和游戏卡顿。综合起来,你说使用体验能好吗?

英特尔挤牙膏

很多人用服务器CPU的很大一个原因,其实是因为当年英特尔没啥对手,家用CPU性价比不高。当年我混迹显卡吧的时候,看到很多人装机用的都是服务器的那款E3V2,当时的家用酷睿系列的处理器价格高,但是单核性能对比服务器CPU来说拉不开差距,结果就是性价比被完爆。

不过这种情况现在应该是不存在了,AMD自从出了锐龙系列处理器,英特尔有了竞争对手,再也不敢挤牙膏了。所以现在这个时段,家用装机,正常挑选一款家用CPU就可以了,没必要在迷信当年的经验去用服务器CPU。如果你还要头硬去用的话,很可能会因为主频低,运行游戏卡,而发出类似本问题的抱怨:“为什么服务器CPU这么垃圾”

服务器和普通电脑在硬件配置上的区别是什么

服务器和普通电脑在硬件配置上的区别是什么?

首先从主板开始说主板是分层的服务器的主板用的多层的质量要好很多不容易老化 cpu方面首先服务器的cpu是不要求超频的因为服务器要求最高的就是要稳定超频会导致内部数据与外部数据不统一服务器不像普通电脑作为终端所以必须要求数据统一服务器的cpu一般用志强系列的服务器的主板支持多cpu分担相对于周边的接口也比较多比如说硬盘线口 pci--e插口

服务器的硬件配置和普通电脑有什么区别

CPU:Pc的CPU应用环境一般是解决单个任务,而服务器面向的应用则是数十甚至数百用户同时发出请求时,系统能从容地处理这些任务,所以系统内部的多线程运算能力和交换速度就会起到至关重要的作用。

内存:服务器使用的内存要求很严格,必须是具有ECC功能的DRAM、SDRAM或DDRRAM。普通PC由于数据流量小,运算时间短,所以对系统的ECC功能并不十分要求。

硬盘:一般采用SCSI高速硬盘,高档服务器上的硬盘还具备热插拔功能,以便在线更换。

专用的服务器和普通电脑区别是什么?

一、高扩展性

可扩展性是指服务器的配置(内存、硬盘、处理器等)可以在原有基础上很方便地根据需要增加。

为了实现扩展性,服务器的机箱一般都比普通的机箱大一倍以上。设计大机箱的原因有两个:一是机箱内部通风良好;二是机箱设有七八个硬盘托架,可以放置更多硬盘。

服务器的电源输出功率比普通PC大得多,甚至有冗余电源(即两个电源)。机箱电源的D型电源接口有十几个之多,普通PC的机箱只有五六个。

服务器的内存在可以根据需要扩展,一般可以扩展到几GB

二、高可靠性

因为服务器在网络中是连续不断地工作的,因此,服务器的可靠性要求是非常高的,目前,提高可靠性的普通做法是部件的冗条配置。服务器可采用ECC内存、RAID技术、热插拨技术、冗余电源、冗余风扇等做法使服务器具备(支持热插拨功能)容错能力和安全保护能力,从而提高可靠性

硬件的冗余设备支持热插拨功能,如冗余电源风扇等,可以在单个部件夹效的情况下自动切换到备用的设备上,保证系统运行的连续性。RAID技术可保证硬盘在出现问题时在线切换,从而保证了数据的完整性。

三、高处理能力

服务器可能需要同响应数十、数百、数千台客户机的请求,因此,服务器的速度应该比普通的PC快。

决定CPU性能的因素有很多,CPU只是其中一个因素,其它,如硬盘的速度、内存的大小、网卡的数据吞吐能力等,都是制约服务器性能的重要因素。

四、高I/O性能

SCSI技术、RAID技术、高速智能网卡、较大的内存扩充能力都是提高IA架构服务器的I/O能力的有效途径。

五、高无故障运行时间

一般来说,工作服务器的要求是工作时间内(每天8小时,每周5天)没有故障;部门级服务器的要求是每天24小时,每周5天内没有故障;企业服务器要求全年365天,每天24小时都没有故障,服务器随时可用,简称为7x24。

六、高强管理性

IA架构服务器主板上集成了各种传感器,用于检测服务器上的各种硬件设备。配合相应软件,可以远程监测服务器。

七、运行服务器操作系统

服务器是硬件与软件相结合的系统虽然在一台普通PC上安装网络操作系统,也可以称之为服务器,但这台服务器不具备真正服务器的特性。

八、提供网络服务

已经具备了相应硬件平台和操作系统的服务器还不能发挥它的作用。如果要发挥它的作用,必须在网络服务器上安装网络服务软件。

服务器和普通电脑的区别

你可以这样理解

服务器就是计算机群组

服务器相当于N多台电脑

服务器专门提供网络服务的,如或者 ftp等等

普通电脑一般是 Desk桌面型的,工作电脑

服务器和普通PC上的区别

服务器与PC的区别应该从硬件和软件两方面来看,根据应用的不同两者的差别很大,打个比方,PC就是那什么都会的门诊医生,但是医术不是那么精湛,而服务器就应该是某个方面的专家了,处理能力越出

众,它“专”的就越厉害。我先从硬件上,根据各个组件说说他们的不同:

1.CPU服务器CPU的指令一般是采用的RISC(精简指令集)。根据研究,在大多数的应用中,CPU仅仅使用了很少的几种命令,于是研究人员就根据这种情况设计了该指令集,运用集中的各种命令组合来实现各种需求。这种设计的好处就是针对性更强,可以根据不同的需求进行专门的优化,处理效更高。相对应的则是CISC(复杂指令集),他的特点就是尽量把各种常用的功能集成到一块,例如我们常常听到的MMX,SSE,SSE+,3D!NOW!等等都是这种类型的。另外,服务器的CPU设计一般都要考虑它的多路功能,说白了就是好几个甚至上千上万个CPU一起工作的问题,而PC则简单多了,这种多路功能用上实在浪费,而它的价钱也的确是上面兄弟说的,不是谁都能受的了的。(补充:服务器的寻址能力很早前就是64位了;APPEL采用的指令集也是RISC,他是个另类,不过现在已经投靠INTEL了)2.内存。内存在服务器上的原则也上越快越大越好,不过它对纠错和稳定提出了更高的要求,比如ECC("错误检查和纠正"好象没人这么叫的)。我们现在使用的PC上很少有人能够用到1G的内存(玩游戏的不算),而在服务器上,这G级的内存有时也会显着捉襟见肘,记得去年国家发布银河最新超级计算机时,他的内存更是达到了1个T;相比内存的速度,人们在应用的时候更优先考虑内存的稳定和纠错能力,只有在保证了这两条,才能再考虑别的东西。

3.硬盘。硬盘性能无论是在PC上还是服务器上,性能的提升一直很缓慢,个人认为,依靠机械的发展,硬盘的发展是不可能出现质的飞跃。由于使用服务器的一般都是企业单位,里面都是保存了大量珍贵数据,这对硬盘就提出了安全稳定的要求,硬盘上出现的相关技术也基本上围绕这两个要求转。比如:数据冗余备份,热插拔等。另外,服务器硬盘必须能做到24*7不间断工作的要求。

4.主板.这个我了解的比较少,很少看到服务器有主板的说法,不过我觉得应该提提服务器的总线设计——多路,就是多个CPU如何能够协调工作。有兴趣建议你看看操作系统方面的书,看老外写的,很好!

5.显卡.除了图形和3D设计(那个人家好象都叫工作站,哪位达人知道请告诉我对不对),服务器上的显卡基本上就是你只要能接上显示器能显示就行!

接下来我说说软件,软件就主要指操作系统,比如我们熟悉的NT,2000 SERVER,2003 SERVER,LINUX,SOLRAIS和UNIX等等,都是专门针对服务器设计的,比如:负载均衡,多路CPU的支持。

服务器与普通电脑之间的区别是什么?

1.稳定性:服务器要求7x24(x365)不间断运行,PC只需要5x8;

2.性能:服务器需要及时响应众多客户端的请求,并提供相应服务,PC一般只由少数人操作;

尤其是网络性能,对PC来讲如果不联网,没有网卡,PC仍是PC,而对服务器来讲没有网卡就不是服务器了,因为,服务器的定义就是在网络中给其它计算机提供服务的计算机系统。

3.扩展性:PC一般不需要很多外插卡,对扩展性要求不高,而服务器一般需要考虑增加网卡、RAID卡、HBA卡等;另外,扩展性还包括,内存、硬盘等存储位、电源,甚至是CPU的扩展,这些更是服务器的特性;

4.网络中的角色:用户直接操作PC进行,发出服务请求,是客户端;服务器工作在后台,只和发出服务请求的客户机进行通信,是服务提供者;

5.多机协同:服务器可由多台构成一个集群,共同提供服务,PC往往独立工作;

6.图形显示、键盘和鼠标的要求:普通台式机和显示器、键鼠等都是一对一的,而且,一般对显卡性能有要求,服务器不直接和用户交互对显卡性能基本无要求,一般键盘鼠标显示器是多台共用的。

希望能帮到你

我们平常所听说的服务器,有的是从软件服务的角度说的,有的是指的真正的硬件服务器。比如我们说配置一个 Web服务器,就是指在操作系统里实现网站信息发布和交互的一个服务,只要机器能跑操作系统,这个服务器就能在这台机器上实现。有时在要求不高的情况下,我们也确实是用普通 PC来做硬件服务器用的。有人可能要说了,我们既然能用普通 PC来做硬件服务器用,那为什么还要花那么多钱买硬件服务器呢?其实,在硬件服务器和普通 PC之间存在着很大的不同!任何产品的功能、性能差异,都是为了满足用户的需求而产生的。硬件服务器的没工作环境需要它长时间、高速、可靠的运行,不能轻易断电、关机、停止服务,即使发生故障,也必须能很快恢复。所以服务器在设计时,必须考虑整个硬件架构的高效、稳定性,比如总线的速度,能安装多个 CPU,能安装大容量的内存,支持 SCSI高速硬盘及 Raid,支持阵列卡,支持光网卡,能支持多个 USB设备。有的服务器设计有双电源,能防止电源损坏引起的当机。服务器的维护和我们普通的 PC也不相同。服务器的生产厂家都是国际上大的计算机厂家,他们对服务器都做了个性化设计,比如服务器的硬件状态指示灯,只要观察一下灯光的颜色就能判断故障的部位。比如 BIOS,里面的程序功能要比 PC完善的多,可以保存硬件的活动日志,以利于诊断故障、消除故障隐患。有的厂家的服务器在拆机维修时,根本不需要螺丝刀,所有配件都是用塑料卡件固定的。稍微好点的服务器一般都需要配接外部的存储设备,比如盘阵和 SAN等,服务器都有管理外部存储的能力,以保证数据安全和可靠、稳定的协同工作。为了提高服务器的可用性和可靠性,服务器还需要支持集群技术,就是多台机器协同工作,提供负载均衡,只要其中有一台服务器正常,服务就不会停止!服务器的功能还有很多!这些都是它比普通 PC好的地方,好的东西它的设计和生产就需要消耗技术和生产成本,价格自然就高。再说到前面的软件服务器和硬件服务器 2个概念,自然用真正的硬件服务器来提供我们的软件服务才是最合适的,才能真正发挥服务的最大性能。哈哈~~以后买服务器不要可惜小钱了吧?专业做效果图的简称图型工作站。“图形工作站”是一种专业从事图形、图像(静态)、图像(动态)与视频工作的高档次专用电脑的总称。从工作站的用途来看,无论是三维动画、数据可视化处理乃至cad/cam和eda,都要求系统具有很强的图形处理能力,从这个意义上来说,可以认为大部分工作站都用作图形工作站。当然图型工作站需要性能比较强悍的电脑来完成任务。显卡、CPU和内存一样都不能差。至于你说的高配这个东西真给不出具体的参数,要看你来完成那些工作的。可以流畅快地完成你的专业制作我觉得就可以了,没有盲目追求高配置的必要。

VPS服务器和普通电脑有什么区别?

1、VPS主机是介于虚拟主机和独立服务器之间的折中方案。

2、 VPS服务器还是和其他用户分享服务器资源,比如CPU和内存,但文件系统是完全分开的。也就是说从文件系统角度看,VPS用户完全独立,看不到这台机器的其他用户。对VPS用户来说,其功能和使用方法与真正的整体租用是完全一样的。

3、同时,CPU、内存和其他服务器资源的划分方法与虚拟主机不同,各个VPS主机用户有自己固定的CPU、内存和其他资源,互不干扰。也就是说,VPS上的任何一个用户只能使用划分给自己的那部分资源,而不会用完整台服务器的资源,也就不会影响其他用户。

4、vps是属于服务器,而普通电脑则是针对个人用户。

同配置的服务器和普通电脑哪个性能更好

首先服务器的主要作用是处理数据,它不需要渲染

所以一般服务器都是多核低频 CPU,很多的CPU组成一个服务器。

家用普通电脑要兼顾影音娱乐,需要渲染高频的CPU。

还要用显卡来加速渲染。

所以你说的性能主要是干嘛。

为什么现在cpu不再提高主频而是走多核

如果你对2004年英特尔总裁贝瑞特当年当着6500人惊天一跪还记忆犹新的话,或许能更能理解这个问题,当年老贝这一跪是对“惟主频论”失误的真心忏悔。

当时NetBurst架构的Prescott(Pentium 4的核心),虽然已经是用了最先进的90nm工艺,但是3GHz主频的CPU功耗就超过百瓦,如果频率要超过4GHz,功耗将是何其了得。

所以,在这儿就可以回答题主,正是因为功耗(散热)制约了主频的提升。

登纳德缩放定律的终结

相信你也听过摩尔定律,它告诉我们,芯片中晶体管的尺寸正在不断减小,因此芯片的晶体管数量可以不断增加。虽然近些年,摩尔定律一直在修改,但它似乎尚未完全停止。

事实上,除了摩尔定律,还有一个很重要的定律,称登纳德缩放定律(Dennard Scaling),大体说,随着晶体管尺寸的减小,它的功耗也按面积大致按比例下降。

摩尔定律和登纳德缩放定律这两个好基友放在一起,就是要告诉我们,可以不断缩小晶体管尺寸,并且在CPU中容纳更多晶体管,而功耗基本不变。

但是,到了Pentium 4,基本上宣告了登纳德缩放定律的终结,因为Pentium 4的性能只有486的6倍,但功耗却是后者的23倍(6^1.75)!

好吧,看看上面的图,随着晶体管的面积密度上升(蓝色线)16倍,功耗仅下降约4倍(紫色线),功耗降低已经不再与芯片面积密度上升成正比,Dennard Scaling is dead.

也就是说,继续以提升频率来提升性能的方法已经行不通了!

多核也能刷性能

到底CPU的性能是怎么定义的?英特尔是这么说的:

其中f为频率,提升f就能提升CPU性能,不过这条路已经不通了。

但是,我们还可以提升IPC呀,IPC(instruction per clock)是每时钟周期内所执行的指令数,所以才有了多核,2个核心,IPC就是原来的2倍,4个核心,IPC就翻了4倍,CPU的性能也就得到提升。所以我们消费级的CPU才从2核变成了4核,再到8核,现在已经升到了16核。

反正呢,现在摩尔定律还能苟延残喘,但Dennard Scaling已是过去式,虽然工艺越来越先进,CPU里可以装进更多的晶体管,但由于功耗墙的原因,已经没办法提高单个内核的频率,解决方法是在芯片上保留更多内核以提高CPU性能。当然并非所有程序都可以支持多核,因此这种潜在的性能增益并不总是能够得以呈现,但肯定是越来越好了。

发动机的转速再高,对速度的提升,也比不上气缸多来的直接! V12发动机不会搞9000转,8000进红线。

一个喇叭尺寸再大,音量再高,看电影的时候,也不可能比7.2声道效果好。

目前限制CPU的不是技术工艺,而是散热,Intel的CPU可以轻松6-7Ghz,前提是你得液氮散热,考虑到目前大多数风冷散热现实,限制主频2-4之间,也是对市场妥协。如果将来某一天,普及微型液氮散热器,说不定多核就没那么重要了

欢迎你的阅读

首先,要说的是现在手机也不是不提高主频了,只是提高的速度比以前更慢了。

欢迎关注作者,一起聊科技、数码。

不要光用频率衡量CPU的单核性能。举个例子,里程碑1代的555Mhz主频的德仪CPU,可以把HTC G7上面那颗1Ghz CPU从上到下秒一个遍。CPU单核心性能,可以用车辆的轮子计算。频率只是转速,代表转多块。影响的另外一个因素是单核能效,对应的是轮子的直径。轮子的直径大,并不需要转多快也能维持高度。但是直径小的,必须提高转速才能达到一样的速度,带来的结果就是功耗和发热的提高。

不要看核心频率来定量CPU性能,要看核心架构在看频率,一般同一架构频率越高性能越好,像3.2gHz的八核推土机性能还不如四核八线程的酷睿i5性能好。四核四线程奔腾N4200还没有双核四线程M5性能好。目前CPU领域性能最好的是酷睿了,像主机CPU美洲豹架构只能和打桩机差不多,和酷睿i差远了,有人推测八核美洲豹性能居然只有比双核酷睿i5好一点。

一个CPU中含有数十亿个晶体管,比如英特尔的主流CPU拥有20亿个晶体管,在某些高端产品中晶体管数量高达60亿个。晶体管在做模拟信号的相互转换时会根据CPU主频的高低产生动态功耗,因而CPU的主频越高,发热量就越大。

当然芯片的制造工艺一直是在不断发展,根据摩尔定律,集成电路上可容纳的元器件的数目,约每隔一年半会增加一倍,性能也将提升一倍。

2000年的奔腾4处理器,制作工艺是180nm;

2010年的酷睿i7-980X,制作工艺32nm;

2013年的酷睿i7 4960X,制作工艺是22nm;

现如今酷睿i7 9700k的制造工艺更是达到了10nm级别。晶体管做得越小,导通电压更低,就可以补偿了CPU主频升高带来功耗的增加。

但是,CPU的制造工艺是不会无休止地提升,越往后技术难度越大,因而制造工艺是限制目前CPU主频提升的最大障碍。而且晶体管尺寸是减小了,但数量的增加会使晶体管之间的积热问题凸显出来,因此总的发热量并不会有太多减少。

况且主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。CPU的性能参数还有二级缓存、三级缓存、指令集、前端总线等方面。一味地升高CPU的主频,会使CPU的发热量成倍增加,最后为了给CPU降温就要在散热装置上花费极大的功夫,这样做是得不偿失的。

所以为了增加CPU的速度,半导体的工程师们就给CPU设计多个核心,能够达到相同的效果。就好比有100道算术题要计算,单核CPU就是让一位速算高手来完成,而多核CPU就是请了四位速算能力一般的人,但最后还是四个人完成100道题所用的时间短,毕竟人多力量大嘛。

现在cpu并没有在核心数上突飞猛进,多核已经是十年前的技术了。现在普遍仍然停留在8核,服务器16核,多的32核,无法进一步提高。为啥,因为多核在访问缓存和内存上需要一定的同步机制。简单讲,核越多,协调它们越困难,访问缓存和内存越慢,制约了核心数的进一步提高。计算机体系结构是一个整体,cpu架构也是一个整体,不是单单某一方面决定的。比如就现在的计算机结构而言,制约其速度的根本不是cpu主频,而是内存访问速度,一级缓存,二级缓存,三级缓存存在的根本原因就是内存访问速度太慢。现在cpu的发展更多的是属于设计,优化范畴,而非技术突破,相对已经进入瓶颈期,单看主频和核数已经意义不大。

其实最主要的是半导体CPU再提升主频非常难,投资非常大,但获得的收益很低,很亏。所以想在半导体CPU没有被替代的时候通过堆核的方法再坑你点钱,想想,8核十六线程,用的到么。当然,里量子计算机普及还需要很长时间,即使普及也不稳定。目前也就i7七代八代(AMD很少关注,所以不太了解,就不妄加评论)适合攒机,主频基本都在4.0GHz以上(睿频),普通不超频一体式水冷压的住。功耗也比较低,4核8线程也适合普通玩家使用,边打游戏边听歌,爽的。买牙膏厂的u得先看看红色阵营有什么动静。说实话牙膏厂的坑钱套路真的很烦。

因为Intel在2004年的时候曾经在提高CPU主频的事情上吃过大亏,于是转战多核心的路线。而多年以后的今天CPU已经是多核心+高频率的组合了。

Intel在奔腾Pentium 4的时代开始研发超长流水线设计的CPU,为了使超长流水线能够发挥它的设计功效,Intel开始在提高CPU主频上下功夫,一度达到3.4GHz。

但那是十几年前的2004年,CPU的工艺只有90nm,超高主频带来的后果就是巨大的发热量和耗电量,3.4GHz CPU的功率可以超过100瓦,而当时Intel正在研发的4GHz CPU的功耗更是无法想象了。

再加上当年Intel 820+ Rambus的风波,直接导致了Pentium 4新一代芯片取消上市,于是就有了非常著名的 Intel CEO“下跪道歉”事件。

在这之后,Intel痛定思痛,决定从「高频率」转向「多核心」,开始了双核、4核、6核研发,通过多核心的“人海战术”来提高CPU的工作效率。

十几年过去了,CPU的制造工艺也在不停进步,慢慢的主频又开始逐渐提升。比如第八代14nm的的Core i7处理器主频就达到了3.7GHz(睿频4.7GHz),同时也采用了6核心的架构。

所以CPU的主频是和制造工艺密切相关的,制造工艺越高,CPU的频率也能够进一步的提高,否则只能靠堆核心的办法提高运算能力了。

阅读剩余
THE END