etl服务器?阿里云etl工具

etl是什么

ETL是指提取、转换、加载的过程。

ETL是数据预处理的核心流程,主要应用于数据仓库的集成和构建。以下是关于ETL的详细解释:

提取:这一阶段是从源系统中获取数据。可能涉及的源系统包括数据库、文件服务器、其他软件系统等。ETL工具会识别并读取这些数据,将其提取出来,为后续的转换和加载做准备。

转换:这是ETL过程中最关键的部分。在提取数据后,需要对数据进行清洗、验证、合并、计算等一系列操作,以确保数据的准确性、一致性和完整性。转换可能包括数据格式的转换、数据质量的检查以及可能的业务规则应用等步骤。这一阶段的主要目的是将数据转化为适合数据存储和查询的格式。

加载:经过转换后的数据被加载到目标系统中,如数据仓库或数据湖。加载过程可以是增量加载或全量加载,取决于数据的更新频率和系统的需求。在这一阶段,数据被存储并准备好供后续的分析和处理使用。

总的来说,ETL是一个数据处理流程,旨在从源系统提取数据,进行必要的转换和处理,然后加载到目标系统以供分析和使用。这一流程在数据集成、数据仓库建设等领域中扮演着至关重要的角色。

为什么要用etl工具自己手动写脚本然后运行不是也可以么

成品ETL工具与手工写脚本之比较:

一、灵活性来讲:ETL工具比较灵活,需要在此平台上设置规则定义,前期是需要工具先前必须已有支持功能,如果需要扩展,要ETL工具源厂商开发。而自己写脚本只需先前好好调研需求,自己写能实现的功能即可。俗话说得好“求人不如求己”哈哈哈!

二、难易度:ETL工具相对上手比较容易,工程师只需具备两个必要条件:1、对数据库熟悉 2、对客户的业务逻辑了解。手动写脚本呢?不仅要具备操作ETL工具的条件,还要必须有一定技术水平。

三、后期管理与维护:ETL工具非常容易,这点上是用工具的最给力的优势。可能也是ETL工具诞生的缘由吧!原因:人力少不说,如有新的需求,只需稍加改动,图形配置定义即可。而手工编码呢?较难。需要重又开发写程序,随着数据信息的日积月累,每日数据的递增,更新。开发的速度赶不上需求的更新,严重到先前开发架构不合理甚至于有可能推倒重来的风险。如果取中间,既有图形配置有兼具脚本开发功能,有款中国的Beeload/ BeeDI

四、性能和效率:这方面取决于多方面如:1、硬件:服务器 CPU内存 2、数据库类型数据类型 3、网络状况 4、ETL工具的配置设计。。。。。整体来说工具属于较高范畴,各家成熟ETL不一致、各有千秋。手工写脚本就要看编程者的水平啦!因人而异,如果直接在数据库上写存储过兴许比任何一家成品工具高得多。在性能上,工具当属老美的informatica IBM的DS

五、开发周期:工具只需操作上源厂商负责培训,再把客户目前需求了解透彻,周期很短,上线见效快。手工编码不仅需要把客户(当前)需求了解透彻,未来需求也要有所预测,再进行开发。这样周期就不得而知了。

六、工作量:从上述些显然保守点得出:ETL工具属中等,手工编码属较重。写好程序还需大量测试工具,不断修正BUG与完善。成熟工具已把这些工具先前做过了,即使有,也是可以容忍个别,源厂商可以分担修正。

七、投入成本价格:ETL工具前期成本投入较多,钞票先付。后期维护成本相对低。编写脚本,先期投入人力(工程师的工薪)中期大量测试人力,后期维护人力(工程师的工薪)看似相对较低。貌似不要票子的开源滴ETL工具 Kettle,后期才付费(服务费与培训费)

总之不管是用工具还是自己写脚本,要全盘考虑,根据各自项目大小,成本,愿意付出哪部分,适合的才是最佳滴!

大数据etl工具有哪些

ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步。ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

下面给大家介绍一下什么是ETL以及ETL常用的三种工具——Datastage,Informatica,Kettle。

一、什么是ETL?

ETL,Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。

数据仓库结构

通俗的说法就是从数据源抽取数据出来,进行清洗加工转换,然后加载到定义好的数据仓库模型中去。目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。

ETL是BI项目重要的一个环节,其设计的好坏影响生成数据的质量,直接关系到BI项目的成败。

二、为什么要用ETL工具?

在数据处理的时候,我们有时会遇到这些问题:

▶当数据来自不同的物理主机,这时候如使用SQL语句去处理的话,就显得比较吃力且开销也更大。

▶数据来源可以是各种不同的数据库或者文件,这时候需要先把他们整理成统一的格式后才可以进行数据的处理,这一过程用代码实现显然有些麻烦。

▶在数据库中我们当然可以使用存储过程去处理数据,但是处理海量数据的时候存储过程显然比较吃力,而且会占用较多数据库的资源,这可能会导致数据资源不足,进而影响数据库的性能。

而上述遇到的问题,我们用ETL工具就可以解决。ETL工具具有以下几点优势:

1、支持多种异构数据源的连接。(部分)

2、图形化的界面操作十分方便。

3、处理海量数据速度快、流程更清晰等。

三、ETL工具介绍

1、Datastage

IBM公司的商业软件,最专业的ETL工具,但同时价格不菲,适合大规模的ETL应用。

使用难度:★★★★

2、Informatica

商业软件,相当专业的ETL工具。价格上比Datastage便宜一点,也适合大规模的ETL应用。

使用难度:★★

3、Kettle

免费,最著名的开源产品,是用纯java编写的ETL工具,只需要JVM环境即可部署,可跨平台,扩展性好。

使用难度:★★

四、三种ETL工具的对比

Datastage、Informatica、Kettle三个ETL工具的特点和差异介绍:

1、操作

这三种ETL工具都是属于比较简单易用的,主要看开发人员对于工具的熟练程度。

Informatica有四个开发管理组件,开发的时候我们需要打开其中三个进行开发,Informatica没有ctrl+z的功能,如果对job作了改变之后,想要撤销,返回到改变前是不可能的。相比Kettle跟Datastage在测试调试的时候不太方便。Datastage全部的操作在同一个界面中,不用切换界面,能够看到数据的来源,整个job的情况,在找bug的时候会比Informatica方便。

Kettle介于两者之间。

2、部署

Kettle只需要JVM环境,Informatica需要服务器和客户端安装,而Datastage的部署比较耗费时间,有一点难度。

3、数据处理的速度

大数据量下Informatica与Datastage的处理速度是比较快的,比较稳定。Kettle的处理速度相比之下稍慢。

4、服务

Informatica与Datastage有很好的商业化的技术支持,而Kettle则没有。商业软件的售后服务上会比免费的开源软件好很多。

5、风险

风险与成本成反比,也与技术能力成正比。

6、扩展

Kettle的扩展性无疑是最好,因为是开源代码,可以自己开发拓展它的功能,而Informatica和Datastage由于是商业软件,基本上没有。

7、Job的监控

三者都有监控和日志工具。

在数据的监控上,个人觉得Datastage的实时监控做的更加好,可以直观看到数据抽取的情况,运行到哪一个控件上。这对于调优来说,我们可以更快的定位到处理速度太慢的控件并进行处理,而informatica也有相应的功能,但是并不直观,需要通过两个界面的对比才可以定位到处理速度缓慢的控件。有时候还需要通过一些方法去查找。

8、网上的技术文档

Datastage< Informatica< kettle,相对来说,Datastage跟Informatica在遇到问题去网上找到解决方法的概率比较低,kettle则比较多。

五、项目经验分享

在项目中,很多时候我们都需要同步生产库的表到数据仓库中。一百多张表同步、重复的操作,对开发人员来说是细心和耐心的考验。在这种情况下,开发人员最喜欢的工具无疑是kettle,多个表的同步都可以用同一个程序运行,不必每一张表的同步都建一个程序,而informatica虽然有提供工具去批量设计,但还是需要生成多个程序进行一一配置,而datastage在这方面就显得比较笨拙。

在做增量表的时候,每次运行后都需要把将最新的一条数据操作时间存到数据库中,下次运行我们就取大于这个时间的数据。Kettle有控件可以直接读取数据库中的这个时间置为变量;对于没有类似功能控件的informatica,我们的做法是先读取的数据库中的这个时间存到文件,然后主程序运行的时候指定这个文件为参数文件,也可以得到同样的效果

阅读剩余
THE END